Get reliable answers to your questions at Westonci.ca, where our knowledgeable community is always ready to help. Explore thousands of questions and answers from a knowledgeable community of experts ready to help you find solutions. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
Let's tackle each part of the question step-by-step:
### Part (a)
Convert [tex]\(0.05\)[/tex] to a fraction.
1. Realize that [tex]\(0.05\)[/tex] is a finite decimal.
2. Since [tex]\(0.05\)[/tex] has two decimal places, it can be written as [tex]\(\frac{5}{100}\)[/tex].
3. Simplify the fraction by dividing both the numerator and the denominator by their greatest common divisor (GCD), which is 5:
[tex]\[ \frac{5 \div 5}{100 \div 5} = \frac{1}{20} \][/tex]
Therefore, [tex]\(0.05\)[/tex] as a fraction is [tex]\(\frac{1}{20}\)[/tex].
### Part (b)
Convert [tex]\(0.2\dot{5}\)[/tex] (which is [tex]\(0.25555\ldots\)[/tex]) to a fraction.
1. Let's set up the repeating decimal. Let [tex]\(x = 0.25555\ldots\)[/tex].
2. Realize that the repeating part starts after the "2":
[tex]\[ x = 0.25555\ldots \][/tex]
3. To eliminate the repeating part, multiply [tex]\(x\)[/tex] by 10 so that the repeating part lines up:
[tex]\[ 10x = 2.5555\ldots \][/tex]
4. Now, we have two equations:
[tex]\[ \begin{cases} x = 0.25555\ldots & \text{(i)} \\ 10x = 2.5555\ldots & \text{(ii)} \end{cases} \][/tex]
5. Subtract equation (i) from equation (ii):
[tex]\[ 10x - x = 2.5555\ldots - 0.25555\ldots \][/tex]
[tex]\[ 9x = 2.3 \][/tex]
6. Solve for [tex]\(x\)[/tex] by dividing both sides by 9:
[tex]\[ x = \frac{2.3}{9} \][/tex]
7. As a fraction, [tex]\(2.3\)[/tex] needs to be converted into an improper fraction first. Recall that [tex]\(2.3 = 2 + \frac{3}{10} = \frac{23}{10}\)[/tex]:
[tex]\[ x = \frac{\frac{23}{10}}{9} = \frac{23}{10} \times \frac{1}{9} = \frac{23}{90} \][/tex]
Thus, the fraction for [tex]\(0.2\dot{5} \)[/tex] in its simplest form is [tex]\(\frac{23}{90}\)[/tex].
### Part (a)
Convert [tex]\(0.05\)[/tex] to a fraction.
1. Realize that [tex]\(0.05\)[/tex] is a finite decimal.
2. Since [tex]\(0.05\)[/tex] has two decimal places, it can be written as [tex]\(\frac{5}{100}\)[/tex].
3. Simplify the fraction by dividing both the numerator and the denominator by their greatest common divisor (GCD), which is 5:
[tex]\[ \frac{5 \div 5}{100 \div 5} = \frac{1}{20} \][/tex]
Therefore, [tex]\(0.05\)[/tex] as a fraction is [tex]\(\frac{1}{20}\)[/tex].
### Part (b)
Convert [tex]\(0.2\dot{5}\)[/tex] (which is [tex]\(0.25555\ldots\)[/tex]) to a fraction.
1. Let's set up the repeating decimal. Let [tex]\(x = 0.25555\ldots\)[/tex].
2. Realize that the repeating part starts after the "2":
[tex]\[ x = 0.25555\ldots \][/tex]
3. To eliminate the repeating part, multiply [tex]\(x\)[/tex] by 10 so that the repeating part lines up:
[tex]\[ 10x = 2.5555\ldots \][/tex]
4. Now, we have two equations:
[tex]\[ \begin{cases} x = 0.25555\ldots & \text{(i)} \\ 10x = 2.5555\ldots & \text{(ii)} \end{cases} \][/tex]
5. Subtract equation (i) from equation (ii):
[tex]\[ 10x - x = 2.5555\ldots - 0.25555\ldots \][/tex]
[tex]\[ 9x = 2.3 \][/tex]
6. Solve for [tex]\(x\)[/tex] by dividing both sides by 9:
[tex]\[ x = \frac{2.3}{9} \][/tex]
7. As a fraction, [tex]\(2.3\)[/tex] needs to be converted into an improper fraction first. Recall that [tex]\(2.3 = 2 + \frac{3}{10} = \frac{23}{10}\)[/tex]:
[tex]\[ x = \frac{\frac{23}{10}}{9} = \frac{23}{10} \times \frac{1}{9} = \frac{23}{90} \][/tex]
Thus, the fraction for [tex]\(0.2\dot{5} \)[/tex] in its simplest form is [tex]\(\frac{23}{90}\)[/tex].
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.