Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Find reliable answers to your questions from a wide community of knowledgeable experts on our user-friendly Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
Sure, let's complete the table step-by-step.
1. Bulb 1: The voltage across Bulb 1 is [tex]\( V_1 = 10 \)[/tex] volts, the resistance is [tex]\( R_1 = 5 \)[/tex] ohms, and the current is [tex]\( i_1 = 2.0 \)[/tex] amperes.
2. Bulb 2: The voltage across Bulb 2 is [tex]\( V_2 = 8 \)[/tex] volts, the resistance is [tex]\( R_2 = 4 \)[/tex] ohms, and the current is [tex]\( i_2 = 2.0 \)[/tex] amperes.
3. Bulb 3: The voltage across Bulb 3 is [tex]\( V_3 = 12 \)[/tex] volts, the resistance is [tex]\( R_3 = 6 \)[/tex] ohms, and the current is [tex]\( i_3 = 2.0 \)[/tex] amperes.
To find the total voltage, sum the voltages of each bulb:
[tex]\[ V_{\text{total}} = V_1 + V_2 + V_3 = 10 + 8 + 12 = 30 \text{ volts} \][/tex]
Next, let's find the total resistance:
Using the formula for parallel resistance:
[tex]\[ \frac{1}{R_{\text{total}}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} = \frac{1}{5} + \frac{1}{4} + \frac{1}{6} \][/tex]
[tex]\[ \frac{1}{R_{\text{total}}} \approx 0.6216216216216217 \][/tex]
Thus,
[tex]\[ R_{\text{total}} \approx 1.6216216216216215 \text{ ohms} \][/tex]
Finally, the total current using Ohm's law:
[tex]\[ i_{\text{total}} = \frac{V_{\text{total}}}{R_{\text{total}}} \][/tex]
[tex]\[ i_{\text{total}} = \frac{30}{1.6216216216216215} \approx 18.5 \text{ amperes} \][/tex]
Now, we can fill in the table:
[tex]\[ \begin{tabular}{|l|l|l|l|} \hline & Voltage (V) & Current (i) & Resistance (R) \\ \hline Bulb 1 & 10 & 2.0 & 5 \\ \hline Bulb 2 & 8 & 2.0 & 4 \\ \hline Bulb 3 & 12 & 2.0 & 6 \\ \hline Total & 30 & 18.5 & 1.6216216216216215 \\ \hline \end{tabular} \][/tex]
1. Bulb 1: The voltage across Bulb 1 is [tex]\( V_1 = 10 \)[/tex] volts, the resistance is [tex]\( R_1 = 5 \)[/tex] ohms, and the current is [tex]\( i_1 = 2.0 \)[/tex] amperes.
2. Bulb 2: The voltage across Bulb 2 is [tex]\( V_2 = 8 \)[/tex] volts, the resistance is [tex]\( R_2 = 4 \)[/tex] ohms, and the current is [tex]\( i_2 = 2.0 \)[/tex] amperes.
3. Bulb 3: The voltage across Bulb 3 is [tex]\( V_3 = 12 \)[/tex] volts, the resistance is [tex]\( R_3 = 6 \)[/tex] ohms, and the current is [tex]\( i_3 = 2.0 \)[/tex] amperes.
To find the total voltage, sum the voltages of each bulb:
[tex]\[ V_{\text{total}} = V_1 + V_2 + V_3 = 10 + 8 + 12 = 30 \text{ volts} \][/tex]
Next, let's find the total resistance:
Using the formula for parallel resistance:
[tex]\[ \frac{1}{R_{\text{total}}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} = \frac{1}{5} + \frac{1}{4} + \frac{1}{6} \][/tex]
[tex]\[ \frac{1}{R_{\text{total}}} \approx 0.6216216216216217 \][/tex]
Thus,
[tex]\[ R_{\text{total}} \approx 1.6216216216216215 \text{ ohms} \][/tex]
Finally, the total current using Ohm's law:
[tex]\[ i_{\text{total}} = \frac{V_{\text{total}}}{R_{\text{total}}} \][/tex]
[tex]\[ i_{\text{total}} = \frac{30}{1.6216216216216215} \approx 18.5 \text{ amperes} \][/tex]
Now, we can fill in the table:
[tex]\[ \begin{tabular}{|l|l|l|l|} \hline & Voltage (V) & Current (i) & Resistance (R) \\ \hline Bulb 1 & 10 & 2.0 & 5 \\ \hline Bulb 2 & 8 & 2.0 & 4 \\ \hline Bulb 3 & 12 & 2.0 & 6 \\ \hline Total & 30 & 18.5 & 1.6216216216216215 \\ \hline \end{tabular} \][/tex]
We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.