Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Discover comprehensive solutions to your questions from a wide network of experts on our user-friendly platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
Sure, let's complete the table step-by-step.
1. Bulb 1: The voltage across Bulb 1 is [tex]\( V_1 = 10 \)[/tex] volts, the resistance is [tex]\( R_1 = 5 \)[/tex] ohms, and the current is [tex]\( i_1 = 2.0 \)[/tex] amperes.
2. Bulb 2: The voltage across Bulb 2 is [tex]\( V_2 = 8 \)[/tex] volts, the resistance is [tex]\( R_2 = 4 \)[/tex] ohms, and the current is [tex]\( i_2 = 2.0 \)[/tex] amperes.
3. Bulb 3: The voltage across Bulb 3 is [tex]\( V_3 = 12 \)[/tex] volts, the resistance is [tex]\( R_3 = 6 \)[/tex] ohms, and the current is [tex]\( i_3 = 2.0 \)[/tex] amperes.
To find the total voltage, sum the voltages of each bulb:
[tex]\[ V_{\text{total}} = V_1 + V_2 + V_3 = 10 + 8 + 12 = 30 \text{ volts} \][/tex]
Next, let's find the total resistance:
Using the formula for parallel resistance:
[tex]\[ \frac{1}{R_{\text{total}}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} = \frac{1}{5} + \frac{1}{4} + \frac{1}{6} \][/tex]
[tex]\[ \frac{1}{R_{\text{total}}} \approx 0.6216216216216217 \][/tex]
Thus,
[tex]\[ R_{\text{total}} \approx 1.6216216216216215 \text{ ohms} \][/tex]
Finally, the total current using Ohm's law:
[tex]\[ i_{\text{total}} = \frac{V_{\text{total}}}{R_{\text{total}}} \][/tex]
[tex]\[ i_{\text{total}} = \frac{30}{1.6216216216216215} \approx 18.5 \text{ amperes} \][/tex]
Now, we can fill in the table:
[tex]\[ \begin{tabular}{|l|l|l|l|} \hline & Voltage (V) & Current (i) & Resistance (R) \\ \hline Bulb 1 & 10 & 2.0 & 5 \\ \hline Bulb 2 & 8 & 2.0 & 4 \\ \hline Bulb 3 & 12 & 2.0 & 6 \\ \hline Total & 30 & 18.5 & 1.6216216216216215 \\ \hline \end{tabular} \][/tex]
1. Bulb 1: The voltage across Bulb 1 is [tex]\( V_1 = 10 \)[/tex] volts, the resistance is [tex]\( R_1 = 5 \)[/tex] ohms, and the current is [tex]\( i_1 = 2.0 \)[/tex] amperes.
2. Bulb 2: The voltage across Bulb 2 is [tex]\( V_2 = 8 \)[/tex] volts, the resistance is [tex]\( R_2 = 4 \)[/tex] ohms, and the current is [tex]\( i_2 = 2.0 \)[/tex] amperes.
3. Bulb 3: The voltage across Bulb 3 is [tex]\( V_3 = 12 \)[/tex] volts, the resistance is [tex]\( R_3 = 6 \)[/tex] ohms, and the current is [tex]\( i_3 = 2.0 \)[/tex] amperes.
To find the total voltage, sum the voltages of each bulb:
[tex]\[ V_{\text{total}} = V_1 + V_2 + V_3 = 10 + 8 + 12 = 30 \text{ volts} \][/tex]
Next, let's find the total resistance:
Using the formula for parallel resistance:
[tex]\[ \frac{1}{R_{\text{total}}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} = \frac{1}{5} + \frac{1}{4} + \frac{1}{6} \][/tex]
[tex]\[ \frac{1}{R_{\text{total}}} \approx 0.6216216216216217 \][/tex]
Thus,
[tex]\[ R_{\text{total}} \approx 1.6216216216216215 \text{ ohms} \][/tex]
Finally, the total current using Ohm's law:
[tex]\[ i_{\text{total}} = \frac{V_{\text{total}}}{R_{\text{total}}} \][/tex]
[tex]\[ i_{\text{total}} = \frac{30}{1.6216216216216215} \approx 18.5 \text{ amperes} \][/tex]
Now, we can fill in the table:
[tex]\[ \begin{tabular}{|l|l|l|l|} \hline & Voltage (V) & Current (i) & Resistance (R) \\ \hline Bulb 1 & 10 & 2.0 & 5 \\ \hline Bulb 2 & 8 & 2.0 & 4 \\ \hline Bulb 3 & 12 & 2.0 & 6 \\ \hline Total & 30 & 18.5 & 1.6216216216216215 \\ \hline \end{tabular} \][/tex]
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.