Westonci.ca is your trusted source for finding answers to a wide range of questions, backed by a knowledgeable community. Connect with a community of experts ready to help you find accurate solutions to your questions quickly and efficiently. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To find all real solutions for the equation [tex]\((2p + 3)^2 - 27 = 0\)[/tex], we will proceed step by step:
1. Start with the given equation:
[tex]\[(2p + 3)^2 - 27 = 0\][/tex]
2. Isolate the squared term:
To do this, add 27 to both sides:
[tex]\[(2p + 3)^2 = 27\][/tex]
3. Take the square root of both sides:
[tex]\[ 2p + 3 = \pm \sqrt{27} \][/tex]
Recall that [tex]\(\sqrt{27}\)[/tex] can be simplified to [tex]\(\sqrt{3^3} = 3\sqrt{3}\)[/tex]. Thus, the equation becomes:
[tex]\[ 2p + 3 = \pm 3\sqrt{3} \][/tex]
4. Solve for [tex]\(p\)[/tex]:
Divide the equation into two separate cases:
- Case 1: [tex]\(2p + 3 = 3\sqrt{3}\)[/tex]
[tex]\[ 2p = 3\sqrt{3} - 3 \][/tex]
[tex]\[ p = \frac{3\sqrt{3} - 3}{2} \][/tex]
Simplify the fraction:
[tex]\[ p = \frac{3(\sqrt{3} - 1)}{2} \][/tex]
- Case 2: [tex]\(2p + 3 = -3\sqrt{3}\)[/tex]
[tex]\[ 2p = -3\sqrt{3} - 3 \][/tex]
[tex]\[ p = \frac{-3\sqrt{3} - 3}{2} \][/tex]
Simplify the fraction:
[tex]\[ p = \frac{-3(\sqrt{3} + 1)}{2} \][/tex]
5. Write down the final solutions:
[tex]\[ p = \frac{3(\sqrt{3} - 1)}{2} \quad \text{and} \quad p = \frac{-3(\sqrt{3} + 1)}{2} \][/tex]
In summary, the solutions are:
[tex]\[ p = -\frac{3}{2} + \frac{3\sqrt{3}}{2} \quad \text{and} \quad p = -\frac{3\sqrt{3}}{2} - \frac{3}{2} \][/tex]
These are the two real solutions to the given equation.
1. Start with the given equation:
[tex]\[(2p + 3)^2 - 27 = 0\][/tex]
2. Isolate the squared term:
To do this, add 27 to both sides:
[tex]\[(2p + 3)^2 = 27\][/tex]
3. Take the square root of both sides:
[tex]\[ 2p + 3 = \pm \sqrt{27} \][/tex]
Recall that [tex]\(\sqrt{27}\)[/tex] can be simplified to [tex]\(\sqrt{3^3} = 3\sqrt{3}\)[/tex]. Thus, the equation becomes:
[tex]\[ 2p + 3 = \pm 3\sqrt{3} \][/tex]
4. Solve for [tex]\(p\)[/tex]:
Divide the equation into two separate cases:
- Case 1: [tex]\(2p + 3 = 3\sqrt{3}\)[/tex]
[tex]\[ 2p = 3\sqrt{3} - 3 \][/tex]
[tex]\[ p = \frac{3\sqrt{3} - 3}{2} \][/tex]
Simplify the fraction:
[tex]\[ p = \frac{3(\sqrt{3} - 1)}{2} \][/tex]
- Case 2: [tex]\(2p + 3 = -3\sqrt{3}\)[/tex]
[tex]\[ 2p = -3\sqrt{3} - 3 \][/tex]
[tex]\[ p = \frac{-3\sqrt{3} - 3}{2} \][/tex]
Simplify the fraction:
[tex]\[ p = \frac{-3(\sqrt{3} + 1)}{2} \][/tex]
5. Write down the final solutions:
[tex]\[ p = \frac{3(\sqrt{3} - 1)}{2} \quad \text{and} \quad p = \frac{-3(\sqrt{3} + 1)}{2} \][/tex]
In summary, the solutions are:
[tex]\[ p = -\frac{3}{2} + \frac{3\sqrt{3}}{2} \quad \text{and} \quad p = -\frac{3\sqrt{3}}{2} - \frac{3}{2} \][/tex]
These are the two real solutions to the given equation.
We appreciate your time. Please come back anytime for the latest information and answers to your questions. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.