Discover the best answers at Westonci.ca, where experts share their insights and knowledge with you. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To find all real solutions for the equation [tex]\((6z + 4)^2 - 22 = 0\)[/tex], we will follow these steps:
1. Simplify the Equation:
Start with the given equation:
[tex]\[ (6z + 4)^2 - 22 = 0 \][/tex]
2. Isolate the Square Term:
Add 22 to both sides to isolate the square term:
[tex]\[ (6z + 4)^2 = 22 \][/tex]
3. Take the Square Root:
Take the square root of both sides of the equation:
[tex]\[ 6z + 4 = \pm \sqrt{22} \][/tex]
This results in two separate equations:
[tex]\[ 6z + 4 = \sqrt{22} \quad \text{and} \quad 6z + 4 = -\sqrt{22} \][/tex]
4. Solve for [tex]\(z\)[/tex]:
For the first equation:
[tex]\[ 6z + 4 = \sqrt{22} \][/tex]
Subtract 4 from both sides:
[tex]\[ 6z = \sqrt{22} - 4 \][/tex]
Divide both sides by 6:
[tex]\[ z = \frac{\sqrt{22} - 4}{6} \][/tex]
Simplify the expression:
[tex]\[ z = -\frac{2}{3} + \frac{\sqrt{22}}{6} \][/tex]
For the second equation:
[tex]\[ 6z + 4 = -\sqrt{22} \][/tex]
Subtract 4 from both sides:
[tex]\[ 6z = -\sqrt{22} - 4 \][/tex]
Divide both sides by 6:
[tex]\[ z = \frac{-\sqrt{22} - 4}{6} \][/tex]
Simplify the expression:
[tex]\[ z = -\frac{\sqrt{22}}{6} - \frac{2}{3} \][/tex]
5. List All Real Solutions:
Therefore, the real solutions to the equation [tex]\((6z + 4)^2 - 22 = 0\)[/tex] are:
[tex]\[ z = -\frac{2}{3} + \frac{\sqrt{22}}{6} \][/tex]
and
[tex]\[ z = -\frac{\sqrt{22}}{6} - \frac{2}{3} \][/tex]
These are the solutions to the given quadratic equation.
1. Simplify the Equation:
Start with the given equation:
[tex]\[ (6z + 4)^2 - 22 = 0 \][/tex]
2. Isolate the Square Term:
Add 22 to both sides to isolate the square term:
[tex]\[ (6z + 4)^2 = 22 \][/tex]
3. Take the Square Root:
Take the square root of both sides of the equation:
[tex]\[ 6z + 4 = \pm \sqrt{22} \][/tex]
This results in two separate equations:
[tex]\[ 6z + 4 = \sqrt{22} \quad \text{and} \quad 6z + 4 = -\sqrt{22} \][/tex]
4. Solve for [tex]\(z\)[/tex]:
For the first equation:
[tex]\[ 6z + 4 = \sqrt{22} \][/tex]
Subtract 4 from both sides:
[tex]\[ 6z = \sqrt{22} - 4 \][/tex]
Divide both sides by 6:
[tex]\[ z = \frac{\sqrt{22} - 4}{6} \][/tex]
Simplify the expression:
[tex]\[ z = -\frac{2}{3} + \frac{\sqrt{22}}{6} \][/tex]
For the second equation:
[tex]\[ 6z + 4 = -\sqrt{22} \][/tex]
Subtract 4 from both sides:
[tex]\[ 6z = -\sqrt{22} - 4 \][/tex]
Divide both sides by 6:
[tex]\[ z = \frac{-\sqrt{22} - 4}{6} \][/tex]
Simplify the expression:
[tex]\[ z = -\frac{\sqrt{22}}{6} - \frac{2}{3} \][/tex]
5. List All Real Solutions:
Therefore, the real solutions to the equation [tex]\((6z + 4)^2 - 22 = 0\)[/tex] are:
[tex]\[ z = -\frac{2}{3} + \frac{\sqrt{22}}{6} \][/tex]
and
[tex]\[ z = -\frac{\sqrt{22}}{6} - \frac{2}{3} \][/tex]
These are the solutions to the given quadratic equation.
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.