Get reliable answers to your questions at Westonci.ca, where our knowledgeable community is always ready to help. Join our platform to connect with experts ready to provide accurate answers to your questions in various fields. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To construct a 99% confidence interval for the true population proportion of adults with children, follow these steps:
1. Determine the sample proportion ([tex]\(\hat{p}\)[/tex]):
The sample proportion is calculated by dividing the number of adults with children ([tex]\(x\)[/tex]) by the total number of adults in the sample ([tex]\(n\)[/tex]).
[tex]\[ \hat{p} = \frac{x}{n} = \frac{324}{410} \approx 0.790 \][/tex]
2. Find the critical value ([tex]\(z\)[/tex]) for the 99% confidence level:
The critical value for a 99% confidence level can be found using the standard normal distribution. This value ([tex]\(z\)[/tex]) defines the number of standard errors to cover the central 99% of the distribution.
[tex]\[ z \approx 2.576 \][/tex]
3. Calculate the standard error (SE):
The standard error of the sample proportion is given by the formula:
[tex]\[ SE = \sqrt{\frac{\hat{p} (1 - \hat{p})}{n}} = \sqrt{\frac{0.790 (1 - 0.790)}{410}} \approx 0.020 \][/tex]
4. Calculate the margin of error (ME):
The margin of error is the product of the critical value and the standard error:
[tex]\[ ME = z \cdot SE = 2.576 \cdot 0.020 \approx 0.052 \][/tex]
5. Determine the confidence interval:
The confidence interval is constructed by adding and subtracting the margin of error from the sample proportion.
[tex]\[ \text{Lower bound} = \hat{p} - ME = 0.790 - 0.052 \approx 0.738 \][/tex]
[tex]\[ \text{Upper bound} = \hat{p} + ME = 0.790 + 0.052 \approx 0.842 \][/tex]
Therefore, the 99% confidence interval for the true population proportion of adults with children is approximately [tex]\(0.738\)[/tex] to [tex]\(0.842\)[/tex].
1. Determine the sample proportion ([tex]\(\hat{p}\)[/tex]):
The sample proportion is calculated by dividing the number of adults with children ([tex]\(x\)[/tex]) by the total number of adults in the sample ([tex]\(n\)[/tex]).
[tex]\[ \hat{p} = \frac{x}{n} = \frac{324}{410} \approx 0.790 \][/tex]
2. Find the critical value ([tex]\(z\)[/tex]) for the 99% confidence level:
The critical value for a 99% confidence level can be found using the standard normal distribution. This value ([tex]\(z\)[/tex]) defines the number of standard errors to cover the central 99% of the distribution.
[tex]\[ z \approx 2.576 \][/tex]
3. Calculate the standard error (SE):
The standard error of the sample proportion is given by the formula:
[tex]\[ SE = \sqrt{\frac{\hat{p} (1 - \hat{p})}{n}} = \sqrt{\frac{0.790 (1 - 0.790)}{410}} \approx 0.020 \][/tex]
4. Calculate the margin of error (ME):
The margin of error is the product of the critical value and the standard error:
[tex]\[ ME = z \cdot SE = 2.576 \cdot 0.020 \approx 0.052 \][/tex]
5. Determine the confidence interval:
The confidence interval is constructed by adding and subtracting the margin of error from the sample proportion.
[tex]\[ \text{Lower bound} = \hat{p} - ME = 0.790 - 0.052 \approx 0.738 \][/tex]
[tex]\[ \text{Upper bound} = \hat{p} + ME = 0.790 + 0.052 \approx 0.842 \][/tex]
Therefore, the 99% confidence interval for the true population proportion of adults with children is approximately [tex]\(0.738\)[/tex] to [tex]\(0.842\)[/tex].
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.