Get reliable answers to your questions at Westonci.ca, where our knowledgeable community is always ready to help. Ask your questions and receive precise answers from experienced professionals across different disciplines. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Sure, let's factor the polynomial [tex]\(x^2 - 12x + 27\)[/tex] step-by-step.
1. Understand the Polynomial: We start with the quadratic polynomial [tex]\(x^2 - 12x + 27\)[/tex].
2. Identify the Coefficients: The polynomial is in the standard form [tex]\(ax^2 + bx + c\)[/tex], where [tex]\(a = 1\)[/tex], [tex]\(b = -12\)[/tex], and [tex]\(c = 27\)[/tex].
3. Find the Factors of the Constant Term: We need to find two numbers that multiply to [tex]\(27\)[/tex] and add up to [tex]\(-12\)[/tex].
- List the pairs of factors of [tex]\(27\)[/tex]: [tex]\((1, 27)\)[/tex], [tex]\((3, 9)\)[/tex], [tex]\((-3, -9)\)[/tex], etc.
4. Select the Correct Pair: From the pairs above, [tex]\((-3, -9)\)[/tex] multiply to [tex]\(27\)[/tex] and add up to [tex]\(-12\)[/tex].
5. Write the Factored Form:
- Using the numbers [tex]\(-3\)[/tex] and [tex]\(-9\)[/tex], we can write the factors of the polynomial as:
[tex]\[ (x - 3)(x - 9) \][/tex]
Thus, the factored form of the polynomial [tex]\(x^2 - 12x + 27\)[/tex] is [tex]\((x - 9)(x - 3)\)[/tex].
So, the correct answer is:
[tex]\[ (x - 9)(x - 3) \][/tex]
1. Understand the Polynomial: We start with the quadratic polynomial [tex]\(x^2 - 12x + 27\)[/tex].
2. Identify the Coefficients: The polynomial is in the standard form [tex]\(ax^2 + bx + c\)[/tex], where [tex]\(a = 1\)[/tex], [tex]\(b = -12\)[/tex], and [tex]\(c = 27\)[/tex].
3. Find the Factors of the Constant Term: We need to find two numbers that multiply to [tex]\(27\)[/tex] and add up to [tex]\(-12\)[/tex].
- List the pairs of factors of [tex]\(27\)[/tex]: [tex]\((1, 27)\)[/tex], [tex]\((3, 9)\)[/tex], [tex]\((-3, -9)\)[/tex], etc.
4. Select the Correct Pair: From the pairs above, [tex]\((-3, -9)\)[/tex] multiply to [tex]\(27\)[/tex] and add up to [tex]\(-12\)[/tex].
5. Write the Factored Form:
- Using the numbers [tex]\(-3\)[/tex] and [tex]\(-9\)[/tex], we can write the factors of the polynomial as:
[tex]\[ (x - 3)(x - 9) \][/tex]
Thus, the factored form of the polynomial [tex]\(x^2 - 12x + 27\)[/tex] is [tex]\((x - 9)(x - 3)\)[/tex].
So, the correct answer is:
[tex]\[ (x - 9)(x - 3) \][/tex]
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.