Get reliable answers to your questions at Westonci.ca, where our knowledgeable community is always ready to help. Get immediate and reliable answers to your questions from a community of experienced professionals on our platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
Let's solve each part of the hypothesis test step-by-step:
### Given Data:
- Null Hypothesis ([tex]\(H_0\)[/tex]): [tex]\(\mu \geq 20\)[/tex] (or equivalently [tex]\( \mu = 20 \)[/tex] when testing)
- Alternative Hypothesis ([tex]\(H_a\)[/tex]): [tex]\(\mu < 20\)[/tex]
- Sample Size ([tex]\(n\)[/tex]): 50
- Sample Mean ([tex]\(\bar{x}\)[/tex]): 19.4
- Population Standard Deviation ([tex]\(\sigma\)[/tex]): 2
- Significance Level ([tex]\(\alpha\)[/tex]): 0.05
### a) Compute the critical value (location of end point(s) of rejection region):
For a one-tailed test with [tex]\(\alpha = 0.05\)[/tex], the critical value is the z-value such that the cumulative probability to the left of this z-value is 0.05. Using the standard normal distribution table, the critical value corresponding to [tex]\(\alpha = 0.05\)[/tex] is:
[tex]\[ z_{\text{critical}} = -1.64485 \][/tex]
### b) Formulate the rejection rule:
To reject the null hypothesis, the test statistic must be in the rejection region. For a one-tailed test where [tex]\(H_a: \mu < 20\)[/tex]:
[tex]\[ \text{Reject } H_0 \text{ if the test statistic } z \text{ is less than } z_{\text{critical}} \][/tex]
[tex]\[ \text{Reject } H_0 \text{ if } z < -1.64485 \][/tex]
### c) What is the value of the test statistic?
The test statistic for a z-test is calculated using the formula:
[tex]\[ z = \frac{\bar{x} - \mu}{\sigma/\sqrt{n}} \][/tex]
Plugging in the values:
[tex]\[ z = \frac{19.4 - 20}{2/\sqrt{50}} \][/tex]
[tex]\[ z = \frac{-0.6}{2/7.071} \][/tex]
[tex]\[ z \approx -2.12132 \][/tex]
### d) What is the conclusion?
Compare the test statistic to the critical value:
[tex]\[ z = -2.12132 \][/tex]
[tex]\[ z_{\text{critical}} = -1.64485 \][/tex]
Since [tex]\(-2.12132 < -1.64485\)[/tex], we reject the null hypothesis [tex]\(H_0\)[/tex].
### e) Calculate the p-value and formulate the rejection rule:
The p-value is the probability of observing a test statistic as extreme as, or more extreme than, the observed statistic under the null hypothesis. For a z-test, the p-value can be found using the cumulative distribution function (CDF) of the standard normal distribution.
[tex]\[ \text{p-value} = P(Z < -2.12132) \approx 0.01695 \][/tex]
Formulate the rejection rule in terms of the p-value:
[tex]\[ \text{Reject } H_0 \text{ if } \text{p-value} < \alpha \][/tex]
Compare the p-value to [tex]\(\alpha\)[/tex]:
[tex]\[ \text{p-value} = 0.01695 \][/tex]
[tex]\[ \alpha = 0.05 \][/tex]
Since [tex]\(0.01695 < 0.05\)[/tex], we reject the null hypothesis [tex]\(H_0\)[/tex].
### Summary of the results:
- Critical value: [tex]\(-1.64485\)[/tex]
- Test statistic: [tex]\(-2.12132\)[/tex]
- Conclusion: Reject [tex]\(H_0\)[/tex]
- p-value: [tex]\(0.01695\)[/tex]
- Rejection by p-value: True
Thus, we conclude that there is sufficient evidence to reject the null hypothesis [tex]\(\mu = 20\)[/tex] in favor of the alternative hypothesis [tex]\(\mu < 20\)[/tex] at the 0.05 significance level.
### Given Data:
- Null Hypothesis ([tex]\(H_0\)[/tex]): [tex]\(\mu \geq 20\)[/tex] (or equivalently [tex]\( \mu = 20 \)[/tex] when testing)
- Alternative Hypothesis ([tex]\(H_a\)[/tex]): [tex]\(\mu < 20\)[/tex]
- Sample Size ([tex]\(n\)[/tex]): 50
- Sample Mean ([tex]\(\bar{x}\)[/tex]): 19.4
- Population Standard Deviation ([tex]\(\sigma\)[/tex]): 2
- Significance Level ([tex]\(\alpha\)[/tex]): 0.05
### a) Compute the critical value (location of end point(s) of rejection region):
For a one-tailed test with [tex]\(\alpha = 0.05\)[/tex], the critical value is the z-value such that the cumulative probability to the left of this z-value is 0.05. Using the standard normal distribution table, the critical value corresponding to [tex]\(\alpha = 0.05\)[/tex] is:
[tex]\[ z_{\text{critical}} = -1.64485 \][/tex]
### b) Formulate the rejection rule:
To reject the null hypothesis, the test statistic must be in the rejection region. For a one-tailed test where [tex]\(H_a: \mu < 20\)[/tex]:
[tex]\[ \text{Reject } H_0 \text{ if the test statistic } z \text{ is less than } z_{\text{critical}} \][/tex]
[tex]\[ \text{Reject } H_0 \text{ if } z < -1.64485 \][/tex]
### c) What is the value of the test statistic?
The test statistic for a z-test is calculated using the formula:
[tex]\[ z = \frac{\bar{x} - \mu}{\sigma/\sqrt{n}} \][/tex]
Plugging in the values:
[tex]\[ z = \frac{19.4 - 20}{2/\sqrt{50}} \][/tex]
[tex]\[ z = \frac{-0.6}{2/7.071} \][/tex]
[tex]\[ z \approx -2.12132 \][/tex]
### d) What is the conclusion?
Compare the test statistic to the critical value:
[tex]\[ z = -2.12132 \][/tex]
[tex]\[ z_{\text{critical}} = -1.64485 \][/tex]
Since [tex]\(-2.12132 < -1.64485\)[/tex], we reject the null hypothesis [tex]\(H_0\)[/tex].
### e) Calculate the p-value and formulate the rejection rule:
The p-value is the probability of observing a test statistic as extreme as, or more extreme than, the observed statistic under the null hypothesis. For a z-test, the p-value can be found using the cumulative distribution function (CDF) of the standard normal distribution.
[tex]\[ \text{p-value} = P(Z < -2.12132) \approx 0.01695 \][/tex]
Formulate the rejection rule in terms of the p-value:
[tex]\[ \text{Reject } H_0 \text{ if } \text{p-value} < \alpha \][/tex]
Compare the p-value to [tex]\(\alpha\)[/tex]:
[tex]\[ \text{p-value} = 0.01695 \][/tex]
[tex]\[ \alpha = 0.05 \][/tex]
Since [tex]\(0.01695 < 0.05\)[/tex], we reject the null hypothesis [tex]\(H_0\)[/tex].
### Summary of the results:
- Critical value: [tex]\(-1.64485\)[/tex]
- Test statistic: [tex]\(-2.12132\)[/tex]
- Conclusion: Reject [tex]\(H_0\)[/tex]
- p-value: [tex]\(0.01695\)[/tex]
- Rejection by p-value: True
Thus, we conclude that there is sufficient evidence to reject the null hypothesis [tex]\(\mu = 20\)[/tex] in favor of the alternative hypothesis [tex]\(\mu < 20\)[/tex] at the 0.05 significance level.
We appreciate your time. Please come back anytime for the latest information and answers to your questions. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.