Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Get quick and reliable solutions to your questions from a community of experienced experts on our platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To find the range of the relation [tex]\( A: x + y = 3 \)[/tex] given the domain [tex]\((2, 1, 5)\)[/tex], follow these steps:
1. Understand the relation [tex]\( x + y = 3 \)[/tex].
2. For each value of [tex]\( x \)[/tex] from the domain, find the corresponding [tex]\( y \)[/tex] that satisfies the equation [tex]\( x + y = 3 \)[/tex].
Let's do this step by step for each [tex]\( x \)[/tex] in the given domain:
1. For [tex]\( x = 2 \)[/tex]:
- Substitute [tex]\( x = 2 \)[/tex] into the equation [tex]\( x + y = 3 \)[/tex]:
[tex]\[ 2 + y = 3 \][/tex]
- Solve for [tex]\( y \)[/tex] by subtracting 2 from both sides:
[tex]\[ y = 3 - 2 = 1 \][/tex]
- So, when [tex]\( x = 2 \)[/tex], [tex]\( y = 1 \)[/tex].
2. For [tex]\( x = 1 \)[/tex]:
- Substitute [tex]\( x = 1 \)[/tex] into the equation [tex]\( x + y = 3 \)[/tex]:
[tex]\[ 1 + y = 3 \][/tex]
- Solve for [tex]\( y \)[/tex] by subtracting 1 from both sides:
[tex]\[ y = 3 - 1 = 2 \][/tex]
- So, when [tex]\( x = 1 \)[/tex], [tex]\( y = 2 \)[/tex].
3. For [tex]\( x = 5 \)[/tex]:
- Substitute [tex]\( x = 5 \)[/tex] into the equation [tex]\( x + y = 3 \)[/tex]:
[tex]\[ 5 + y = 3 \][/tex]
- Solve for [tex]\( y \)[/tex] by subtracting 5 from both sides:
[tex]\[ y = 3 - 5 = -2 \][/tex]
- So, when [tex]\( x = 5 \)[/tex], [tex]\( y = -2 \)[/tex].
Based on these calculations, the corresponding [tex]\( y \)[/tex]-values, which form the range, are [tex]\((1, 2, -2)\)[/tex]. Therefore, the range for the relation [tex]\( A \)[/tex] given the domain [tex]\((2, 1, 5)\)[/tex] is:
[tex]\[ \boxed{(1, 2, -2)} \][/tex]
None of the provided multiple choice answers match this range explicitly.
1. Understand the relation [tex]\( x + y = 3 \)[/tex].
2. For each value of [tex]\( x \)[/tex] from the domain, find the corresponding [tex]\( y \)[/tex] that satisfies the equation [tex]\( x + y = 3 \)[/tex].
Let's do this step by step for each [tex]\( x \)[/tex] in the given domain:
1. For [tex]\( x = 2 \)[/tex]:
- Substitute [tex]\( x = 2 \)[/tex] into the equation [tex]\( x + y = 3 \)[/tex]:
[tex]\[ 2 + y = 3 \][/tex]
- Solve for [tex]\( y \)[/tex] by subtracting 2 from both sides:
[tex]\[ y = 3 - 2 = 1 \][/tex]
- So, when [tex]\( x = 2 \)[/tex], [tex]\( y = 1 \)[/tex].
2. For [tex]\( x = 1 \)[/tex]:
- Substitute [tex]\( x = 1 \)[/tex] into the equation [tex]\( x + y = 3 \)[/tex]:
[tex]\[ 1 + y = 3 \][/tex]
- Solve for [tex]\( y \)[/tex] by subtracting 1 from both sides:
[tex]\[ y = 3 - 1 = 2 \][/tex]
- So, when [tex]\( x = 1 \)[/tex], [tex]\( y = 2 \)[/tex].
3. For [tex]\( x = 5 \)[/tex]:
- Substitute [tex]\( x = 5 \)[/tex] into the equation [tex]\( x + y = 3 \)[/tex]:
[tex]\[ 5 + y = 3 \][/tex]
- Solve for [tex]\( y \)[/tex] by subtracting 5 from both sides:
[tex]\[ y = 3 - 5 = -2 \][/tex]
- So, when [tex]\( x = 5 \)[/tex], [tex]\( y = -2 \)[/tex].
Based on these calculations, the corresponding [tex]\( y \)[/tex]-values, which form the range, are [tex]\((1, 2, -2)\)[/tex]. Therefore, the range for the relation [tex]\( A \)[/tex] given the domain [tex]\((2, 1, 5)\)[/tex] is:
[tex]\[ \boxed{(1, 2, -2)} \][/tex]
None of the provided multiple choice answers match this range explicitly.
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. We hope this was helpful. Please come back whenever you need more information or answers to your queries. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.