Welcome to Westonci.ca, where finding answers to your questions is made simple by our community of experts. Get detailed and precise answers to your questions from a dedicated community of experts on our Q&A platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Let's analyze the given cumulative distribution function [tex]\(F(x)\)[/tex] of the random variable [tex]\(X\)[/tex] and determine its values at various specified points. The function is defined as:
[tex]\[ F(x) = \begin{cases} 0 & \text{if } x < 0 \\ 0.2x & \text{if } 0 \leq x < 5 \\ 1 & \text{if } 5 \leq x \end{cases} \][/tex]
We'll determine [tex]\( F(x) \)[/tex] at [tex]\( x = -1, 0, 2.5, 5, \)[/tex] and [tex]\( 6 \)[/tex].
1. For [tex]\( x = -1 \)[/tex]:
- Since [tex]\( -1 < 0 \)[/tex], we use the first case of the function.
[tex]\[ F(-1) = 0 \][/tex]
2. For [tex]\( x = 0 \)[/tex]:
- Since [tex]\( 0 \leq 0 < 5 \)[/tex], we use the second case of the function.
[tex]\[ F(0) = 0.2 \cdot 0 = 0 \][/tex]
3. For [tex]\( x = 2.5 \)[/tex]:
- Since [tex]\( 0 \leq 2.5 < 5 \)[/tex], we use the second case of the function.
[tex]\[ F(2.5) = 0.2 \cdot 2.5 = 0.5 \][/tex]
4. For [tex]\( x = 5 \)[/tex]:
- Since [tex]\( 5 \leq x \)[/tex], we use the third case of the function.
[tex]\[ F(5) = 1 \][/tex]
5. For [tex]\( x = 6 \)[/tex]:
- Since [tex]\( 6 \geq 5 \)[/tex], we use the third case of the function.
[tex]\[ F(6) = 1 \][/tex]
In summary, the values of the cumulative distribution function at the specified points are:
[tex]\[ \left( F(-1), F(0), F(2.5), F(5), F(6) \right) = (0, 0, 0.5, 1, 1) \][/tex]
[tex]\[ F(x) = \begin{cases} 0 & \text{if } x < 0 \\ 0.2x & \text{if } 0 \leq x < 5 \\ 1 & \text{if } 5 \leq x \end{cases} \][/tex]
We'll determine [tex]\( F(x) \)[/tex] at [tex]\( x = -1, 0, 2.5, 5, \)[/tex] and [tex]\( 6 \)[/tex].
1. For [tex]\( x = -1 \)[/tex]:
- Since [tex]\( -1 < 0 \)[/tex], we use the first case of the function.
[tex]\[ F(-1) = 0 \][/tex]
2. For [tex]\( x = 0 \)[/tex]:
- Since [tex]\( 0 \leq 0 < 5 \)[/tex], we use the second case of the function.
[tex]\[ F(0) = 0.2 \cdot 0 = 0 \][/tex]
3. For [tex]\( x = 2.5 \)[/tex]:
- Since [tex]\( 0 \leq 2.5 < 5 \)[/tex], we use the second case of the function.
[tex]\[ F(2.5) = 0.2 \cdot 2.5 = 0.5 \][/tex]
4. For [tex]\( x = 5 \)[/tex]:
- Since [tex]\( 5 \leq x \)[/tex], we use the third case of the function.
[tex]\[ F(5) = 1 \][/tex]
5. For [tex]\( x = 6 \)[/tex]:
- Since [tex]\( 6 \geq 5 \)[/tex], we use the third case of the function.
[tex]\[ F(6) = 1 \][/tex]
In summary, the values of the cumulative distribution function at the specified points are:
[tex]\[ \left( F(-1), F(0), F(2.5), F(5), F(6) \right) = (0, 0, 0.5, 1, 1) \][/tex]
We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.