Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Get immediate and reliable answers to your questions from a community of experienced experts on our platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To determine how many moles of [tex]\( \text{BaCl}_2 \)[/tex] form from 100.0 mL of 1.0 M HCl when reacted with excess [tex]\( \text{Ba(OH)}_2 \)[/tex], follow these steps:
1. Convert the volume of HCl from mL to L:
We are given a volume of 100.0 mL. To convert this to liters, recall that:
[tex]\[ 1 \, \text{L} = 1000 \, \text{mL} \][/tex]
Therefore,
[tex]\[ \text{Volume of HCl} = \frac{100.0 \, \text{mL}}{1000} = 0.1 \, \text{L} \][/tex]
2. Calculate the moles of HCl:
We are given the concentration of HCl as 1.0 M (moles per liter). The formula to calculate moles from volume and concentration is:
[tex]\[ \text{Moles of HCl} = \text{Concentration of HCl} \times \text{Volume in liters} \][/tex]
Substituting the values, we get:
[tex]\[ \text{Moles of HCl} = 1.0 \, \text{M} \times 0.1 \, \text{L} = 0.1 \, \text{moles} \][/tex]
3. Determine the moles of [tex]\( \text{BaCl}_2 \)[/tex] produced:
The balanced chemical equation for the reaction is:
[tex]\[ \text{Ba(OH)}_2 + 2 \, \text{HCl} \rightarrow \text{BaCl}_2 + 2 \, \text{H}_2\text{O} \][/tex]
From the stoichiometry of the reaction, 2 moles of HCl react with 1 mole of [tex]\( \text{Ba(OH)}_2 \)[/tex] to produce 1 mole of [tex]\( \text{BaCl}_2 \)[/tex].
Therefore, for every 2 moles of HCl, we get 1 mole of [tex]\( \text{BaCl}_2 \)[/tex]. We have 0.1 moles of HCl, so we can find the moles of [tex]\( \text{BaCl}_2 \)[/tex] produced by dividing by 2:
[tex]\[ \text{Moles of BaCl}_2 = \frac{0.1 \, \text{moles of HCl}}{2} = 0.05 \, \text{moles} \][/tex]
Hence, from 100.0 mL of 1.0 M HCl and excess [tex]\( \text{Ba(OH)}_2 \)[/tex], we form 0.05 moles of [tex]\( \text{BaCl}_2 \)[/tex].
1. Convert the volume of HCl from mL to L:
We are given a volume of 100.0 mL. To convert this to liters, recall that:
[tex]\[ 1 \, \text{L} = 1000 \, \text{mL} \][/tex]
Therefore,
[tex]\[ \text{Volume of HCl} = \frac{100.0 \, \text{mL}}{1000} = 0.1 \, \text{L} \][/tex]
2. Calculate the moles of HCl:
We are given the concentration of HCl as 1.0 M (moles per liter). The formula to calculate moles from volume and concentration is:
[tex]\[ \text{Moles of HCl} = \text{Concentration of HCl} \times \text{Volume in liters} \][/tex]
Substituting the values, we get:
[tex]\[ \text{Moles of HCl} = 1.0 \, \text{M} \times 0.1 \, \text{L} = 0.1 \, \text{moles} \][/tex]
3. Determine the moles of [tex]\( \text{BaCl}_2 \)[/tex] produced:
The balanced chemical equation for the reaction is:
[tex]\[ \text{Ba(OH)}_2 + 2 \, \text{HCl} \rightarrow \text{BaCl}_2 + 2 \, \text{H}_2\text{O} \][/tex]
From the stoichiometry of the reaction, 2 moles of HCl react with 1 mole of [tex]\( \text{Ba(OH)}_2 \)[/tex] to produce 1 mole of [tex]\( \text{BaCl}_2 \)[/tex].
Therefore, for every 2 moles of HCl, we get 1 mole of [tex]\( \text{BaCl}_2 \)[/tex]. We have 0.1 moles of HCl, so we can find the moles of [tex]\( \text{BaCl}_2 \)[/tex] produced by dividing by 2:
[tex]\[ \text{Moles of BaCl}_2 = \frac{0.1 \, \text{moles of HCl}}{2} = 0.05 \, \text{moles} \][/tex]
Hence, from 100.0 mL of 1.0 M HCl and excess [tex]\( \text{Ba(OH)}_2 \)[/tex], we form 0.05 moles of [tex]\( \text{BaCl}_2 \)[/tex].
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.