At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Join our Q&A platform and connect with professionals ready to provide precise answers to your questions in various areas. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To determine the enthalpy of the reaction, let's follow a step-by-step approach:
1. Given Data:
- The number of moles of [tex]\( \text{BaCl}_2 \)[/tex] formed is [tex]\( 0.050 \)[/tex] mol.
- The amount of energy released in the solution ([tex]\( q_\text{soln} \)[/tex]) is [tex]\( 5934 \)[/tex] Joules.
2. Understanding the Concept:
- The enthalpy of the reaction ([tex]\( \Delta H \)[/tex]) represents the amount of energy change associated with the reaction. This is typically given in Joules per mole (J/mol).
- We know how much energy ([tex]\( q_\text{soln} \)[/tex]) is released for a known quantity of substance (moles of [tex]\( \text{BaCl}_2 \)[/tex]).
3. Calculation of Enthalpy Change:
- To find the enthalpy change per mole of [tex]\( \text{BaCl}_2 \)[/tex] formed, we will divide the total energy released by the number of moles formed.
[tex]\[ \Delta H = \frac{q_\text{soln}}{\text{moles of } \text{BaCl}_2} \][/tex]
4. Substitute the Given Values:
- Given [tex]\( q_\text{soln} = 5934 \)[/tex] J and moles of [tex]\( \text{BaCl}_2 = 0.050 \)[/tex] mol,
[tex]\[ \Delta H = \frac{5934 \text{ J}}{0.050 \text{ mol}} \][/tex]
5. Perform the Division:
[tex]\[ \Delta H = 118680 \text{ J/mol} \][/tex]
6. Interpret the Result:
- The positive value indicates the energy release per mole, meaning the reaction is exothermic, releasing energy to the surroundings.
Conclusion:
The enthalpy of the reaction, when [tex]\( \text{Ba(OH)}_2 \)[/tex] reacts with [tex]\( \text{HCl} \)[/tex] to form [tex]\( \text{BaCl}_2 \)[/tex] and water, is [tex]\( 118680 \)[/tex] Joules per mole of [tex]\( \text{BaCl}_2 \)[/tex] formed.
1. Given Data:
- The number of moles of [tex]\( \text{BaCl}_2 \)[/tex] formed is [tex]\( 0.050 \)[/tex] mol.
- The amount of energy released in the solution ([tex]\( q_\text{soln} \)[/tex]) is [tex]\( 5934 \)[/tex] Joules.
2. Understanding the Concept:
- The enthalpy of the reaction ([tex]\( \Delta H \)[/tex]) represents the amount of energy change associated with the reaction. This is typically given in Joules per mole (J/mol).
- We know how much energy ([tex]\( q_\text{soln} \)[/tex]) is released for a known quantity of substance (moles of [tex]\( \text{BaCl}_2 \)[/tex]).
3. Calculation of Enthalpy Change:
- To find the enthalpy change per mole of [tex]\( \text{BaCl}_2 \)[/tex] formed, we will divide the total energy released by the number of moles formed.
[tex]\[ \Delta H = \frac{q_\text{soln}}{\text{moles of } \text{BaCl}_2} \][/tex]
4. Substitute the Given Values:
- Given [tex]\( q_\text{soln} = 5934 \)[/tex] J and moles of [tex]\( \text{BaCl}_2 = 0.050 \)[/tex] mol,
[tex]\[ \Delta H = \frac{5934 \text{ J}}{0.050 \text{ mol}} \][/tex]
5. Perform the Division:
[tex]\[ \Delta H = 118680 \text{ J/mol} \][/tex]
6. Interpret the Result:
- The positive value indicates the energy release per mole, meaning the reaction is exothermic, releasing energy to the surroundings.
Conclusion:
The enthalpy of the reaction, when [tex]\( \text{Ba(OH)}_2 \)[/tex] reacts with [tex]\( \text{HCl} \)[/tex] to form [tex]\( \text{BaCl}_2 \)[/tex] and water, is [tex]\( 118680 \)[/tex] Joules per mole of [tex]\( \text{BaCl}_2 \)[/tex] formed.
We appreciate your time. Please come back anytime for the latest information and answers to your questions. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.