Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Get detailed and precise answers to your questions from a dedicated community of experts on our Q&A platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
Certainly! To determine how many moles of [tex]\( \text{Ba(NO}_3\text{)}_2 \)[/tex] are produced from the given quantities of [tex]\( \text{HNO}_3 \)[/tex], we will follow these steps:
1. Write the balanced chemical equation:
[tex]\[ 2 \text{HNO}_3 + \text{Ba(OH)}_2 \rightarrow 2 \text{H}_2\text{O} + \text{Ba(NO}_3\text{)}_2 \][/tex]
2. Determine the moles of [tex]\( \text{HNO}_3 \)[/tex] and [tex]\( \text{Ba(OH)}_2 \)[/tex] we start with:
- Volume of [tex]\( \text{HNO}_3 = 50.0 \)[/tex] mL
- Concentration of [tex]\( \text{HNO}_3 = 0.250 \)[/tex] M
- Volume of [tex]\( \text{Ba(OH)}_2 = 30.0 \)[/tex] mL
- Concentration of [tex]\( \text{Ba(OH)}_2 = 0.400 \)[/tex] M
3. Convert volumes from mL to L:
- Volume [tex]\( \text{HNO}_3 \)[/tex] in liters: [tex]\( \frac{50.0}{1000} = 0.050 \, \text{L} \)[/tex]
- Volume [tex]\( \text{Ba(OH)}_2 \)[/tex] in liters: [tex]\( \frac{30.0}{1000} = 0.030 \, \text{L} \)[/tex]
4. Calculate the moles of each reactant:
- Moles of [tex]\( \text{HNO}_3 \)[/tex] = Volume [tex]\( \times \)[/tex] Concentration = [tex]\( 0.050 \, \text{L} \times 0.250 \, \text{M} = 0.0125 \, \text{mol} \)[/tex]
- Moles of [tex]\( \text{Ba(OH)}_2 \)[/tex] = Volume [tex]\( \times \)[/tex] Concentration = [tex]\( 0.030 \, \text{L} \times 0.400 \, \text{M} = 0.012 \, \text{mol} \)[/tex]
5. Identify the limiting reagent:
According to the balanced equation, 2 moles of [tex]\( \text{HNO}_3 \)[/tex] react with 1 mole of [tex]\( \text{Ba(OH)}_2 \)[/tex]. Hence, the stoichiometric ratio is 2:1.
Compare the ratio of the moles you have:
- Ratio of [tex]\( \text{HNO}_3 \)[/tex] to [tex]\( \text{Ba(OH)}_2 \)[/tex] is [tex]\( 0.0125 \, \text{mol} : 0.012 \, \text{mol} \)[/tex].
- To satisfy the reaction's stoichiometry (2:1), 0.0125 moles of [tex]\( \text{HNO}_3 \)[/tex] would require [tex]\( 0.0125 / 2 = 0.00625 \, \text{mol} \)[/tex] of [tex]\( \text{Ba(OH)}_2 \)[/tex].
Since we have only 0.012 moles of [tex]\( \text{Ba(OH)}_2 \)[/tex], the [tex]\( \text{HNO}_3 \)[/tex] is the limiting reagent.
6. Calculate the moles of [tex]\( \text{Ba(NO}_3\text{)}_2 \)[/tex] that can form:
From the balanced equation, 2 moles of [tex]\( \text{HNO}_3 \)[/tex] produce 1 mole of [tex]\( \text{Ba(NO}_3\text{)}_2 \)[/tex].
So, 0.0125 moles of [tex]\( \text{HNO}_3 \)[/tex] will produce:
[tex]\[ \text{Moles of Ba(NO}_3\text{)}_2 = \frac{0.0125 \, \text{mol}}{2} = 0.00625 \, \text{mol} \][/tex]
Therefore, the [tex]\( \text{HNO}_3 \)[/tex] forms [tex]\( 0.00625 \)[/tex] mol [tex]\( \text{Ba(NO}_3\text{)}_2 \)[/tex].
1. Write the balanced chemical equation:
[tex]\[ 2 \text{HNO}_3 + \text{Ba(OH)}_2 \rightarrow 2 \text{H}_2\text{O} + \text{Ba(NO}_3\text{)}_2 \][/tex]
2. Determine the moles of [tex]\( \text{HNO}_3 \)[/tex] and [tex]\( \text{Ba(OH)}_2 \)[/tex] we start with:
- Volume of [tex]\( \text{HNO}_3 = 50.0 \)[/tex] mL
- Concentration of [tex]\( \text{HNO}_3 = 0.250 \)[/tex] M
- Volume of [tex]\( \text{Ba(OH)}_2 = 30.0 \)[/tex] mL
- Concentration of [tex]\( \text{Ba(OH)}_2 = 0.400 \)[/tex] M
3. Convert volumes from mL to L:
- Volume [tex]\( \text{HNO}_3 \)[/tex] in liters: [tex]\( \frac{50.0}{1000} = 0.050 \, \text{L} \)[/tex]
- Volume [tex]\( \text{Ba(OH)}_2 \)[/tex] in liters: [tex]\( \frac{30.0}{1000} = 0.030 \, \text{L} \)[/tex]
4. Calculate the moles of each reactant:
- Moles of [tex]\( \text{HNO}_3 \)[/tex] = Volume [tex]\( \times \)[/tex] Concentration = [tex]\( 0.050 \, \text{L} \times 0.250 \, \text{M} = 0.0125 \, \text{mol} \)[/tex]
- Moles of [tex]\( \text{Ba(OH)}_2 \)[/tex] = Volume [tex]\( \times \)[/tex] Concentration = [tex]\( 0.030 \, \text{L} \times 0.400 \, \text{M} = 0.012 \, \text{mol} \)[/tex]
5. Identify the limiting reagent:
According to the balanced equation, 2 moles of [tex]\( \text{HNO}_3 \)[/tex] react with 1 mole of [tex]\( \text{Ba(OH)}_2 \)[/tex]. Hence, the stoichiometric ratio is 2:1.
Compare the ratio of the moles you have:
- Ratio of [tex]\( \text{HNO}_3 \)[/tex] to [tex]\( \text{Ba(OH)}_2 \)[/tex] is [tex]\( 0.0125 \, \text{mol} : 0.012 \, \text{mol} \)[/tex].
- To satisfy the reaction's stoichiometry (2:1), 0.0125 moles of [tex]\( \text{HNO}_3 \)[/tex] would require [tex]\( 0.0125 / 2 = 0.00625 \, \text{mol} \)[/tex] of [tex]\( \text{Ba(OH)}_2 \)[/tex].
Since we have only 0.012 moles of [tex]\( \text{Ba(OH)}_2 \)[/tex], the [tex]\( \text{HNO}_3 \)[/tex] is the limiting reagent.
6. Calculate the moles of [tex]\( \text{Ba(NO}_3\text{)}_2 \)[/tex] that can form:
From the balanced equation, 2 moles of [tex]\( \text{HNO}_3 \)[/tex] produce 1 mole of [tex]\( \text{Ba(NO}_3\text{)}_2 \)[/tex].
So, 0.0125 moles of [tex]\( \text{HNO}_3 \)[/tex] will produce:
[tex]\[ \text{Moles of Ba(NO}_3\text{)}_2 = \frac{0.0125 \, \text{mol}}{2} = 0.00625 \, \text{mol} \][/tex]
Therefore, the [tex]\( \text{HNO}_3 \)[/tex] forms [tex]\( 0.00625 \)[/tex] mol [tex]\( \text{Ba(NO}_3\text{)}_2 \)[/tex].
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.