Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Join our Q&A platform to get precise answers from experts in diverse fields and enhance your understanding. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Certainly! To determine how many moles of [tex]\( \text{Ba(NO}_3\text{)}_2 \)[/tex] are produced from the given quantities of [tex]\( \text{HNO}_3 \)[/tex], we will follow these steps:
1. Write the balanced chemical equation:
[tex]\[ 2 \text{HNO}_3 + \text{Ba(OH)}_2 \rightarrow 2 \text{H}_2\text{O} + \text{Ba(NO}_3\text{)}_2 \][/tex]
2. Determine the moles of [tex]\( \text{HNO}_3 \)[/tex] and [tex]\( \text{Ba(OH)}_2 \)[/tex] we start with:
- Volume of [tex]\( \text{HNO}_3 = 50.0 \)[/tex] mL
- Concentration of [tex]\( \text{HNO}_3 = 0.250 \)[/tex] M
- Volume of [tex]\( \text{Ba(OH)}_2 = 30.0 \)[/tex] mL
- Concentration of [tex]\( \text{Ba(OH)}_2 = 0.400 \)[/tex] M
3. Convert volumes from mL to L:
- Volume [tex]\( \text{HNO}_3 \)[/tex] in liters: [tex]\( \frac{50.0}{1000} = 0.050 \, \text{L} \)[/tex]
- Volume [tex]\( \text{Ba(OH)}_2 \)[/tex] in liters: [tex]\( \frac{30.0}{1000} = 0.030 \, \text{L} \)[/tex]
4. Calculate the moles of each reactant:
- Moles of [tex]\( \text{HNO}_3 \)[/tex] = Volume [tex]\( \times \)[/tex] Concentration = [tex]\( 0.050 \, \text{L} \times 0.250 \, \text{M} = 0.0125 \, \text{mol} \)[/tex]
- Moles of [tex]\( \text{Ba(OH)}_2 \)[/tex] = Volume [tex]\( \times \)[/tex] Concentration = [tex]\( 0.030 \, \text{L} \times 0.400 \, \text{M} = 0.012 \, \text{mol} \)[/tex]
5. Identify the limiting reagent:
According to the balanced equation, 2 moles of [tex]\( \text{HNO}_3 \)[/tex] react with 1 mole of [tex]\( \text{Ba(OH)}_2 \)[/tex]. Hence, the stoichiometric ratio is 2:1.
Compare the ratio of the moles you have:
- Ratio of [tex]\( \text{HNO}_3 \)[/tex] to [tex]\( \text{Ba(OH)}_2 \)[/tex] is [tex]\( 0.0125 \, \text{mol} : 0.012 \, \text{mol} \)[/tex].
- To satisfy the reaction's stoichiometry (2:1), 0.0125 moles of [tex]\( \text{HNO}_3 \)[/tex] would require [tex]\( 0.0125 / 2 = 0.00625 \, \text{mol} \)[/tex] of [tex]\( \text{Ba(OH)}_2 \)[/tex].
Since we have only 0.012 moles of [tex]\( \text{Ba(OH)}_2 \)[/tex], the [tex]\( \text{HNO}_3 \)[/tex] is the limiting reagent.
6. Calculate the moles of [tex]\( \text{Ba(NO}_3\text{)}_2 \)[/tex] that can form:
From the balanced equation, 2 moles of [tex]\( \text{HNO}_3 \)[/tex] produce 1 mole of [tex]\( \text{Ba(NO}_3\text{)}_2 \)[/tex].
So, 0.0125 moles of [tex]\( \text{HNO}_3 \)[/tex] will produce:
[tex]\[ \text{Moles of Ba(NO}_3\text{)}_2 = \frac{0.0125 \, \text{mol}}{2} = 0.00625 \, \text{mol} \][/tex]
Therefore, the [tex]\( \text{HNO}_3 \)[/tex] forms [tex]\( 0.00625 \)[/tex] mol [tex]\( \text{Ba(NO}_3\text{)}_2 \)[/tex].
1. Write the balanced chemical equation:
[tex]\[ 2 \text{HNO}_3 + \text{Ba(OH)}_2 \rightarrow 2 \text{H}_2\text{O} + \text{Ba(NO}_3\text{)}_2 \][/tex]
2. Determine the moles of [tex]\( \text{HNO}_3 \)[/tex] and [tex]\( \text{Ba(OH)}_2 \)[/tex] we start with:
- Volume of [tex]\( \text{HNO}_3 = 50.0 \)[/tex] mL
- Concentration of [tex]\( \text{HNO}_3 = 0.250 \)[/tex] M
- Volume of [tex]\( \text{Ba(OH)}_2 = 30.0 \)[/tex] mL
- Concentration of [tex]\( \text{Ba(OH)}_2 = 0.400 \)[/tex] M
3. Convert volumes from mL to L:
- Volume [tex]\( \text{HNO}_3 \)[/tex] in liters: [tex]\( \frac{50.0}{1000} = 0.050 \, \text{L} \)[/tex]
- Volume [tex]\( \text{Ba(OH)}_2 \)[/tex] in liters: [tex]\( \frac{30.0}{1000} = 0.030 \, \text{L} \)[/tex]
4. Calculate the moles of each reactant:
- Moles of [tex]\( \text{HNO}_3 \)[/tex] = Volume [tex]\( \times \)[/tex] Concentration = [tex]\( 0.050 \, \text{L} \times 0.250 \, \text{M} = 0.0125 \, \text{mol} \)[/tex]
- Moles of [tex]\( \text{Ba(OH)}_2 \)[/tex] = Volume [tex]\( \times \)[/tex] Concentration = [tex]\( 0.030 \, \text{L} \times 0.400 \, \text{M} = 0.012 \, \text{mol} \)[/tex]
5. Identify the limiting reagent:
According to the balanced equation, 2 moles of [tex]\( \text{HNO}_3 \)[/tex] react with 1 mole of [tex]\( \text{Ba(OH)}_2 \)[/tex]. Hence, the stoichiometric ratio is 2:1.
Compare the ratio of the moles you have:
- Ratio of [tex]\( \text{HNO}_3 \)[/tex] to [tex]\( \text{Ba(OH)}_2 \)[/tex] is [tex]\( 0.0125 \, \text{mol} : 0.012 \, \text{mol} \)[/tex].
- To satisfy the reaction's stoichiometry (2:1), 0.0125 moles of [tex]\( \text{HNO}_3 \)[/tex] would require [tex]\( 0.0125 / 2 = 0.00625 \, \text{mol} \)[/tex] of [tex]\( \text{Ba(OH)}_2 \)[/tex].
Since we have only 0.012 moles of [tex]\( \text{Ba(OH)}_2 \)[/tex], the [tex]\( \text{HNO}_3 \)[/tex] is the limiting reagent.
6. Calculate the moles of [tex]\( \text{Ba(NO}_3\text{)}_2 \)[/tex] that can form:
From the balanced equation, 2 moles of [tex]\( \text{HNO}_3 \)[/tex] produce 1 mole of [tex]\( \text{Ba(NO}_3\text{)}_2 \)[/tex].
So, 0.0125 moles of [tex]\( \text{HNO}_3 \)[/tex] will produce:
[tex]\[ \text{Moles of Ba(NO}_3\text{)}_2 = \frac{0.0125 \, \text{mol}}{2} = 0.00625 \, \text{mol} \][/tex]
Therefore, the [tex]\( \text{HNO}_3 \)[/tex] forms [tex]\( 0.00625 \)[/tex] mol [tex]\( \text{Ba(NO}_3\text{)}_2 \)[/tex].
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.