madey21
Answered

Get reliable answers to your questions at Westonci.ca, where our knowledgeable community is always ready to help. Experience the convenience of finding accurate answers to your questions from knowledgeable professionals on our platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.

Given the reaction:

[tex]\[ 2 HNO_3 + Ba(OH)_2 \rightarrow 2 H_2O + Ba(NO_3)_2 \][/tex]

If [tex]\(50.0 \, \text{mL}\)[/tex] of [tex]\(0.250 \, M \, HNO_3\)[/tex] is added to [tex]\(30.0 \, \text{mL}\)[/tex] of [tex]\(0.400 \, M \, Ba(OH)_2\)[/tex], how many moles of [tex]\(Ba(NO_3)_2\)[/tex] could form from the [tex]\(Ba(OH)_2\)[/tex]?

Sagot :

Certainly! Let's go through the steps to determine how many moles of [tex]\( Ba(NO_3)_2 \)[/tex] could form given the quantities and concentrations of [tex]\( HNO_3 \)[/tex] and [tex]\( Ba(OH)_2 \)[/tex].

### Step-by-Step Solution:

#### 1. Calculation of Moles of Each Reactant:

- Moles of [tex]\( HNO_3 \)[/tex]:
- Given volume of [tex]\( HNO_3 \)[/tex]: [tex]\( 50.0 \)[/tex] mL
- Given molarity of [tex]\( HNO_3 \)[/tex]: [tex]\( 0.250 \)[/tex] M
- Convert volume from mL to L: [tex]\( 50.0 \, \text{mL} \times \frac{1 \, \text{L}}{1000 \, \text{mL}} = 0.0500 \, \text{L} \)[/tex]
- Calculate moles of [tex]\( HNO_3 \)[/tex]:
[tex]\[ \text{Moles of } HNO_3 = 0.250 \, \text{M} \times 0.0500 \, \text{L} = 0.0125 \, \text{moles} \][/tex]

- Moles of [tex]\( Ba(OH)_2 \)[/tex]:
- Given volume of [tex]\( Ba(OH)_2 \)[/tex]: [tex]\( 30.0 \)[/tex] mL
- Given molarity of [tex]\( Ba(OH)_2 \)[/tex]: [tex]\( 0.400 \)[/tex] M
- Convert volume from mL to L: [tex]\( 30.0 \, \text{mL} \times \frac{1 \, \text{L}}{1000 \, \text{mL}} = 0.0300 \, \text{L} \)[/tex]
- Calculate moles of [tex]\( Ba(OH)_2 \)[/tex]:
[tex]\[ \text{Moles of } Ba(OH)_2 = 0.400 \, \text{M} \times 0.0300 \, \text{L} = 0.012 \, \text{moles} \][/tex]

#### 2. Stoichiometry of the Reaction:

The balanced chemical equation is:
[tex]\[ 2 \, HNO_3 + Ba(OH)_2 \rightarrow 2 \, H_2O + Ba(NO_3)_2 \][/tex]
- This equation tells us that 1 mole of [tex]\( Ba(OH)_2 \)[/tex] reacts with 2 moles of [tex]\( HNO_3 \)[/tex].

#### 3. Determine the Limiting Reagent:

- Calculate how many moles of [tex]\( HNO_3 \)[/tex] are needed to completely react with the available [tex]\( Ba(OH)_2 \)[/tex]:
[tex]\[ \text{Moles of } HNO_3 \text{ needed} = 2 \times \text{Moles of } Ba(OH)_2 = 2 \times 0.012 \, \text{moles} = 0.024 \, \text{moles} \][/tex]
- Compare the moles of [tex]\( HNO_3 \)[/tex] needed with the moles of [tex]\( HNO_3 \)[/tex] available:
[tex]\[ \text{Available } HNO_3 = 0.0125 \, \text{moles} \][/tex]
- Since [tex]\( 0.0125 \text{ moles} \)[/tex] of [tex]\( HNO_3 \)[/tex] is less than [tex]\( 0.024 \text{ moles} \)[/tex], [tex]\( HNO_3 \)[/tex] is the limiting reagent.

#### 4. Calculate Moles of [tex]\( Ba(NO_3)_2 \)[/tex] Formed:

- Since [tex]\( HNO_3 \)[/tex] is the limiting reagent, we use its moles to calculate the product:
- According to the balanced equation, 2 moles of [tex]\( HNO_3 \)[/tex] produce 1 mole of [tex]\( Ba(NO_3)_2 \)[/tex].
- Hence, moles of [tex]\( Ba(NO_3)_2 \)[/tex] formed:
[tex]\[ \text{Moles of } Ba(NO_3)_2 = \frac{0.0125 \, \text{moles of } HNO_3}{2} = 0.00625 \, \text{moles} \][/tex]

Therefore, the number of moles of [tex]\( Ba(NO_3)_2 \)[/tex] that could form from the given quantities of [tex]\( Ba(OH)_2 \)[/tex] and [tex]\( HNO_3 \)[/tex] is [tex]\( \boxed{0.00625} \)[/tex] moles.