At Westonci.ca, we make it easy for you to get the answers you need from a community of knowledgeable individuals. Experience the convenience of getting accurate answers to your questions from a dedicated community of professionals. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
Let's solve this problem step-by-step to find the heat change for the reaction.
### Step 1: Calculate the moles of [tex]\( \text{HNO}_3 \)[/tex] and [tex]\( \text{Ba(OH)}_2 \)[/tex].
Given:
- Volume of [tex]\( \text{HNO}_3 \)[/tex] solution: [tex]\( V_{\text{HNO}_3} = 50.0 \)[/tex] mL
- Concentration of [tex]\( \text{HNO}_3 \)[/tex] solution: [tex]\( M_{\text{HNO}_3} = 0.25 \)[/tex] M
Convert the volume to liters:
[tex]\[ \text{HNO}_3 \, \text{(moles)} = V_{\text{HNO}_3} \times M_{\text{HNO}_3} = 50.0 \, \text{mL} \times \frac{0.25 \, \text{mol}}{1000 \, \text{mL}} = 0.0125 \, \text{moles} \][/tex]
Given:
- Volume of [tex]\( \text{Ba(OH)}_2 \)[/tex] solution: [tex]\( V_{\text{Ba(OH)}_2} = 30.0 \)[/tex] mL
- Concentration of [tex]\( \text{Ba(OH)}_2 \)[/tex] solution: [tex]\( M_{\text{Ba(OH)}_2} = 0.40 \)[/tex] M
Convert the volume to liters:
[tex]\[ \text{Ba(OH)}_2 \, \text{(moles)} = V_{\text{Ba(OH)}_2} \times M_{\text{Ba(OH)}_2} = 30.0 \, \text{mL} \times \frac{0.40 \, \text{mol}}{1000 \, \text{mL}} = 0.012 \, \text{moles} \][/tex]
### Step 2: Determine the limiting reactant.
Reaction:
[tex]\[ 2 \text{HNO}_3 + \text{Ba(OH)}_2 \rightarrow 2 \text{H}_2\text{O} + \text{Ba(NO}_3)_2 \][/tex]
Moles ratio [tex]\( \text{HNO}_3 \)[/tex]: [tex]\( \text{Ba(OH)}_2 \)[/tex] is 2:1.
To react with [tex]\( 0.012 \)[/tex] moles of [tex]\( \text{Ba(OH)}_2 \)[/tex]:
The [tex]\( \text{HNO}_3 \)[/tex] needed:
[tex]\[ \text{HNO}_3 \, \text{needed} = 2 \times 0.012 \, \text{moles} = 0.024 \, \text{moles} \][/tex]
Since only 0.0125 moles of [tex]\( \text{HNO}_3 \)[/tex] are available and it's less than 0.024 moles, [tex]\( \text{HNO}_3 \)[/tex] becomes the limiting reactant.
Calculate limiting reactant in terms of equivalence:
[tex]\[ \frac{0.0125}{2} = 0.00625 \, \text{equivalents} \][/tex]
Hence, the limiting reactant is 0.00625 moles (equivalents).
### Step 3: Calculate the total mass of the solution.
Volume:
[tex]\[ \text{Total Volume} = 50.0 \, \text{mL} + 30.0 \, \text{mL} = 80.0 \, \text{mL} \][/tex]
Density: [tex]\( d_{\text{soln}} = 1.05 \, \text{g/mL} \)[/tex]
Total mass:
[tex]\[ \text{Total Mass} = 80.0 \, \text{mL} \times 1.05 \, \text{g/mL} = 84.0 \, \text{g} \][/tex]
### Step 4: Calculate the heat absorbed by the solution.
Specific Heat Capacity of the solution: [tex]\( c_{\text{soln}} = 4.2 \, \text{J/g°C} \)[/tex]
Temperature Change: [tex]\( \Delta T = 1.2 \, \text{°C} \)[/tex]
Heat absorbed by the solution:
[tex]\[ q_{\text{soln}} = \text{Total Mass} \times c_{\text{soln}} \times \Delta T = 84.0 \, \text{g} \times 4.2 \, \text{J/g°C} \times 1.2 \, \text{°C} = 423.36 \, \text{J} \][/tex]
### Step 5: Calculate the heat absorbed by the calorimeter.
Specific Heat Capacity of the calorimeter: [tex]\( c_{\text{cal}} = 4.5 \, \text{J/°C} \)[/tex]
Heat absorbed by the calorimeter:
[tex]\[ q_{\text{cal}} = c_{\text{cal}} \times \Delta T = 4.5 \, \text{J/°C} \times 1.2 \, \text{°C} = 5.4 \, \text{J} \][/tex]
### Step 6: Calculate the total heat change.
[tex]\[ q_{\text{total}} = q_{\text{soln}} + q_{\text{cal}} = 423.36 \, \text{J} + 5.4 \, \text{J} = 428.76 \, \text{J} \][/tex]
### Final Answer:
The heat change for the reaction is [tex]\( 428.76 \, \text{J} \)[/tex].
### Step 1: Calculate the moles of [tex]\( \text{HNO}_3 \)[/tex] and [tex]\( \text{Ba(OH)}_2 \)[/tex].
Given:
- Volume of [tex]\( \text{HNO}_3 \)[/tex] solution: [tex]\( V_{\text{HNO}_3} = 50.0 \)[/tex] mL
- Concentration of [tex]\( \text{HNO}_3 \)[/tex] solution: [tex]\( M_{\text{HNO}_3} = 0.25 \)[/tex] M
Convert the volume to liters:
[tex]\[ \text{HNO}_3 \, \text{(moles)} = V_{\text{HNO}_3} \times M_{\text{HNO}_3} = 50.0 \, \text{mL} \times \frac{0.25 \, \text{mol}}{1000 \, \text{mL}} = 0.0125 \, \text{moles} \][/tex]
Given:
- Volume of [tex]\( \text{Ba(OH)}_2 \)[/tex] solution: [tex]\( V_{\text{Ba(OH)}_2} = 30.0 \)[/tex] mL
- Concentration of [tex]\( \text{Ba(OH)}_2 \)[/tex] solution: [tex]\( M_{\text{Ba(OH)}_2} = 0.40 \)[/tex] M
Convert the volume to liters:
[tex]\[ \text{Ba(OH)}_2 \, \text{(moles)} = V_{\text{Ba(OH)}_2} \times M_{\text{Ba(OH)}_2} = 30.0 \, \text{mL} \times \frac{0.40 \, \text{mol}}{1000 \, \text{mL}} = 0.012 \, \text{moles} \][/tex]
### Step 2: Determine the limiting reactant.
Reaction:
[tex]\[ 2 \text{HNO}_3 + \text{Ba(OH)}_2 \rightarrow 2 \text{H}_2\text{O} + \text{Ba(NO}_3)_2 \][/tex]
Moles ratio [tex]\( \text{HNO}_3 \)[/tex]: [tex]\( \text{Ba(OH)}_2 \)[/tex] is 2:1.
To react with [tex]\( 0.012 \)[/tex] moles of [tex]\( \text{Ba(OH)}_2 \)[/tex]:
The [tex]\( \text{HNO}_3 \)[/tex] needed:
[tex]\[ \text{HNO}_3 \, \text{needed} = 2 \times 0.012 \, \text{moles} = 0.024 \, \text{moles} \][/tex]
Since only 0.0125 moles of [tex]\( \text{HNO}_3 \)[/tex] are available and it's less than 0.024 moles, [tex]\( \text{HNO}_3 \)[/tex] becomes the limiting reactant.
Calculate limiting reactant in terms of equivalence:
[tex]\[ \frac{0.0125}{2} = 0.00625 \, \text{equivalents} \][/tex]
Hence, the limiting reactant is 0.00625 moles (equivalents).
### Step 3: Calculate the total mass of the solution.
Volume:
[tex]\[ \text{Total Volume} = 50.0 \, \text{mL} + 30.0 \, \text{mL} = 80.0 \, \text{mL} \][/tex]
Density: [tex]\( d_{\text{soln}} = 1.05 \, \text{g/mL} \)[/tex]
Total mass:
[tex]\[ \text{Total Mass} = 80.0 \, \text{mL} \times 1.05 \, \text{g/mL} = 84.0 \, \text{g} \][/tex]
### Step 4: Calculate the heat absorbed by the solution.
Specific Heat Capacity of the solution: [tex]\( c_{\text{soln}} = 4.2 \, \text{J/g°C} \)[/tex]
Temperature Change: [tex]\( \Delta T = 1.2 \, \text{°C} \)[/tex]
Heat absorbed by the solution:
[tex]\[ q_{\text{soln}} = \text{Total Mass} \times c_{\text{soln}} \times \Delta T = 84.0 \, \text{g} \times 4.2 \, \text{J/g°C} \times 1.2 \, \text{°C} = 423.36 \, \text{J} \][/tex]
### Step 5: Calculate the heat absorbed by the calorimeter.
Specific Heat Capacity of the calorimeter: [tex]\( c_{\text{cal}} = 4.5 \, \text{J/°C} \)[/tex]
Heat absorbed by the calorimeter:
[tex]\[ q_{\text{cal}} = c_{\text{cal}} \times \Delta T = 4.5 \, \text{J/°C} \times 1.2 \, \text{°C} = 5.4 \, \text{J} \][/tex]
### Step 6: Calculate the total heat change.
[tex]\[ q_{\text{total}} = q_{\text{soln}} + q_{\text{cal}} = 423.36 \, \text{J} + 5.4 \, \text{J} = 428.76 \, \text{J} \][/tex]
### Final Answer:
The heat change for the reaction is [tex]\( 428.76 \, \text{J} \)[/tex].
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.