Discover a wealth of knowledge at Westonci.ca, where experts provide answers to your most pressing questions. Join our platform to get reliable answers to your questions from a knowledgeable community of experts. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Let's solve this problem step-by-step to find the heat change for the reaction.
### Step 1: Calculate the moles of [tex]\( \text{HNO}_3 \)[/tex] and [tex]\( \text{Ba(OH)}_2 \)[/tex].
Given:
- Volume of [tex]\( \text{HNO}_3 \)[/tex] solution: [tex]\( V_{\text{HNO}_3} = 50.0 \)[/tex] mL
- Concentration of [tex]\( \text{HNO}_3 \)[/tex] solution: [tex]\( M_{\text{HNO}_3} = 0.25 \)[/tex] M
Convert the volume to liters:
[tex]\[ \text{HNO}_3 \, \text{(moles)} = V_{\text{HNO}_3} \times M_{\text{HNO}_3} = 50.0 \, \text{mL} \times \frac{0.25 \, \text{mol}}{1000 \, \text{mL}} = 0.0125 \, \text{moles} \][/tex]
Given:
- Volume of [tex]\( \text{Ba(OH)}_2 \)[/tex] solution: [tex]\( V_{\text{Ba(OH)}_2} = 30.0 \)[/tex] mL
- Concentration of [tex]\( \text{Ba(OH)}_2 \)[/tex] solution: [tex]\( M_{\text{Ba(OH)}_2} = 0.40 \)[/tex] M
Convert the volume to liters:
[tex]\[ \text{Ba(OH)}_2 \, \text{(moles)} = V_{\text{Ba(OH)}_2} \times M_{\text{Ba(OH)}_2} = 30.0 \, \text{mL} \times \frac{0.40 \, \text{mol}}{1000 \, \text{mL}} = 0.012 \, \text{moles} \][/tex]
### Step 2: Determine the limiting reactant.
Reaction:
[tex]\[ 2 \text{HNO}_3 + \text{Ba(OH)}_2 \rightarrow 2 \text{H}_2\text{O} + \text{Ba(NO}_3)_2 \][/tex]
Moles ratio [tex]\( \text{HNO}_3 \)[/tex]: [tex]\( \text{Ba(OH)}_2 \)[/tex] is 2:1.
To react with [tex]\( 0.012 \)[/tex] moles of [tex]\( \text{Ba(OH)}_2 \)[/tex]:
The [tex]\( \text{HNO}_3 \)[/tex] needed:
[tex]\[ \text{HNO}_3 \, \text{needed} = 2 \times 0.012 \, \text{moles} = 0.024 \, \text{moles} \][/tex]
Since only 0.0125 moles of [tex]\( \text{HNO}_3 \)[/tex] are available and it's less than 0.024 moles, [tex]\( \text{HNO}_3 \)[/tex] becomes the limiting reactant.
Calculate limiting reactant in terms of equivalence:
[tex]\[ \frac{0.0125}{2} = 0.00625 \, \text{equivalents} \][/tex]
Hence, the limiting reactant is 0.00625 moles (equivalents).
### Step 3: Calculate the total mass of the solution.
Volume:
[tex]\[ \text{Total Volume} = 50.0 \, \text{mL} + 30.0 \, \text{mL} = 80.0 \, \text{mL} \][/tex]
Density: [tex]\( d_{\text{soln}} = 1.05 \, \text{g/mL} \)[/tex]
Total mass:
[tex]\[ \text{Total Mass} = 80.0 \, \text{mL} \times 1.05 \, \text{g/mL} = 84.0 \, \text{g} \][/tex]
### Step 4: Calculate the heat absorbed by the solution.
Specific Heat Capacity of the solution: [tex]\( c_{\text{soln}} = 4.2 \, \text{J/g°C} \)[/tex]
Temperature Change: [tex]\( \Delta T = 1.2 \, \text{°C} \)[/tex]
Heat absorbed by the solution:
[tex]\[ q_{\text{soln}} = \text{Total Mass} \times c_{\text{soln}} \times \Delta T = 84.0 \, \text{g} \times 4.2 \, \text{J/g°C} \times 1.2 \, \text{°C} = 423.36 \, \text{J} \][/tex]
### Step 5: Calculate the heat absorbed by the calorimeter.
Specific Heat Capacity of the calorimeter: [tex]\( c_{\text{cal}} = 4.5 \, \text{J/°C} \)[/tex]
Heat absorbed by the calorimeter:
[tex]\[ q_{\text{cal}} = c_{\text{cal}} \times \Delta T = 4.5 \, \text{J/°C} \times 1.2 \, \text{°C} = 5.4 \, \text{J} \][/tex]
### Step 6: Calculate the total heat change.
[tex]\[ q_{\text{total}} = q_{\text{soln}} + q_{\text{cal}} = 423.36 \, \text{J} + 5.4 \, \text{J} = 428.76 \, \text{J} \][/tex]
### Final Answer:
The heat change for the reaction is [tex]\( 428.76 \, \text{J} \)[/tex].
### Step 1: Calculate the moles of [tex]\( \text{HNO}_3 \)[/tex] and [tex]\( \text{Ba(OH)}_2 \)[/tex].
Given:
- Volume of [tex]\( \text{HNO}_3 \)[/tex] solution: [tex]\( V_{\text{HNO}_3} = 50.0 \)[/tex] mL
- Concentration of [tex]\( \text{HNO}_3 \)[/tex] solution: [tex]\( M_{\text{HNO}_3} = 0.25 \)[/tex] M
Convert the volume to liters:
[tex]\[ \text{HNO}_3 \, \text{(moles)} = V_{\text{HNO}_3} \times M_{\text{HNO}_3} = 50.0 \, \text{mL} \times \frac{0.25 \, \text{mol}}{1000 \, \text{mL}} = 0.0125 \, \text{moles} \][/tex]
Given:
- Volume of [tex]\( \text{Ba(OH)}_2 \)[/tex] solution: [tex]\( V_{\text{Ba(OH)}_2} = 30.0 \)[/tex] mL
- Concentration of [tex]\( \text{Ba(OH)}_2 \)[/tex] solution: [tex]\( M_{\text{Ba(OH)}_2} = 0.40 \)[/tex] M
Convert the volume to liters:
[tex]\[ \text{Ba(OH)}_2 \, \text{(moles)} = V_{\text{Ba(OH)}_2} \times M_{\text{Ba(OH)}_2} = 30.0 \, \text{mL} \times \frac{0.40 \, \text{mol}}{1000 \, \text{mL}} = 0.012 \, \text{moles} \][/tex]
### Step 2: Determine the limiting reactant.
Reaction:
[tex]\[ 2 \text{HNO}_3 + \text{Ba(OH)}_2 \rightarrow 2 \text{H}_2\text{O} + \text{Ba(NO}_3)_2 \][/tex]
Moles ratio [tex]\( \text{HNO}_3 \)[/tex]: [tex]\( \text{Ba(OH)}_2 \)[/tex] is 2:1.
To react with [tex]\( 0.012 \)[/tex] moles of [tex]\( \text{Ba(OH)}_2 \)[/tex]:
The [tex]\( \text{HNO}_3 \)[/tex] needed:
[tex]\[ \text{HNO}_3 \, \text{needed} = 2 \times 0.012 \, \text{moles} = 0.024 \, \text{moles} \][/tex]
Since only 0.0125 moles of [tex]\( \text{HNO}_3 \)[/tex] are available and it's less than 0.024 moles, [tex]\( \text{HNO}_3 \)[/tex] becomes the limiting reactant.
Calculate limiting reactant in terms of equivalence:
[tex]\[ \frac{0.0125}{2} = 0.00625 \, \text{equivalents} \][/tex]
Hence, the limiting reactant is 0.00625 moles (equivalents).
### Step 3: Calculate the total mass of the solution.
Volume:
[tex]\[ \text{Total Volume} = 50.0 \, \text{mL} + 30.0 \, \text{mL} = 80.0 \, \text{mL} \][/tex]
Density: [tex]\( d_{\text{soln}} = 1.05 \, \text{g/mL} \)[/tex]
Total mass:
[tex]\[ \text{Total Mass} = 80.0 \, \text{mL} \times 1.05 \, \text{g/mL} = 84.0 \, \text{g} \][/tex]
### Step 4: Calculate the heat absorbed by the solution.
Specific Heat Capacity of the solution: [tex]\( c_{\text{soln}} = 4.2 \, \text{J/g°C} \)[/tex]
Temperature Change: [tex]\( \Delta T = 1.2 \, \text{°C} \)[/tex]
Heat absorbed by the solution:
[tex]\[ q_{\text{soln}} = \text{Total Mass} \times c_{\text{soln}} \times \Delta T = 84.0 \, \text{g} \times 4.2 \, \text{J/g°C} \times 1.2 \, \text{°C} = 423.36 \, \text{J} \][/tex]
### Step 5: Calculate the heat absorbed by the calorimeter.
Specific Heat Capacity of the calorimeter: [tex]\( c_{\text{cal}} = 4.5 \, \text{J/°C} \)[/tex]
Heat absorbed by the calorimeter:
[tex]\[ q_{\text{cal}} = c_{\text{cal}} \times \Delta T = 4.5 \, \text{J/°C} \times 1.2 \, \text{°C} = 5.4 \, \text{J} \][/tex]
### Step 6: Calculate the total heat change.
[tex]\[ q_{\text{total}} = q_{\text{soln}} + q_{\text{cal}} = 423.36 \, \text{J} + 5.4 \, \text{J} = 428.76 \, \text{J} \][/tex]
### Final Answer:
The heat change for the reaction is [tex]\( 428.76 \, \text{J} \)[/tex].
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.