Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Explore our Q&A platform to find reliable answers from a wide range of experts in different fields. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
Let's solve this problem step-by-step to find the heat change for the reaction.
### Step 1: Calculate the moles of [tex]\( \text{HNO}_3 \)[/tex] and [tex]\( \text{Ba(OH)}_2 \)[/tex].
Given:
- Volume of [tex]\( \text{HNO}_3 \)[/tex] solution: [tex]\( V_{\text{HNO}_3} = 50.0 \)[/tex] mL
- Concentration of [tex]\( \text{HNO}_3 \)[/tex] solution: [tex]\( M_{\text{HNO}_3} = 0.25 \)[/tex] M
Convert the volume to liters:
[tex]\[ \text{HNO}_3 \, \text{(moles)} = V_{\text{HNO}_3} \times M_{\text{HNO}_3} = 50.0 \, \text{mL} \times \frac{0.25 \, \text{mol}}{1000 \, \text{mL}} = 0.0125 \, \text{moles} \][/tex]
Given:
- Volume of [tex]\( \text{Ba(OH)}_2 \)[/tex] solution: [tex]\( V_{\text{Ba(OH)}_2} = 30.0 \)[/tex] mL
- Concentration of [tex]\( \text{Ba(OH)}_2 \)[/tex] solution: [tex]\( M_{\text{Ba(OH)}_2} = 0.40 \)[/tex] M
Convert the volume to liters:
[tex]\[ \text{Ba(OH)}_2 \, \text{(moles)} = V_{\text{Ba(OH)}_2} \times M_{\text{Ba(OH)}_2} = 30.0 \, \text{mL} \times \frac{0.40 \, \text{mol}}{1000 \, \text{mL}} = 0.012 \, \text{moles} \][/tex]
### Step 2: Determine the limiting reactant.
Reaction:
[tex]\[ 2 \text{HNO}_3 + \text{Ba(OH)}_2 \rightarrow 2 \text{H}_2\text{O} + \text{Ba(NO}_3)_2 \][/tex]
Moles ratio [tex]\( \text{HNO}_3 \)[/tex]: [tex]\( \text{Ba(OH)}_2 \)[/tex] is 2:1.
To react with [tex]\( 0.012 \)[/tex] moles of [tex]\( \text{Ba(OH)}_2 \)[/tex]:
The [tex]\( \text{HNO}_3 \)[/tex] needed:
[tex]\[ \text{HNO}_3 \, \text{needed} = 2 \times 0.012 \, \text{moles} = 0.024 \, \text{moles} \][/tex]
Since only 0.0125 moles of [tex]\( \text{HNO}_3 \)[/tex] are available and it's less than 0.024 moles, [tex]\( \text{HNO}_3 \)[/tex] becomes the limiting reactant.
Calculate limiting reactant in terms of equivalence:
[tex]\[ \frac{0.0125}{2} = 0.00625 \, \text{equivalents} \][/tex]
Hence, the limiting reactant is 0.00625 moles (equivalents).
### Step 3: Calculate the total mass of the solution.
Volume:
[tex]\[ \text{Total Volume} = 50.0 \, \text{mL} + 30.0 \, \text{mL} = 80.0 \, \text{mL} \][/tex]
Density: [tex]\( d_{\text{soln}} = 1.05 \, \text{g/mL} \)[/tex]
Total mass:
[tex]\[ \text{Total Mass} = 80.0 \, \text{mL} \times 1.05 \, \text{g/mL} = 84.0 \, \text{g} \][/tex]
### Step 4: Calculate the heat absorbed by the solution.
Specific Heat Capacity of the solution: [tex]\( c_{\text{soln}} = 4.2 \, \text{J/g°C} \)[/tex]
Temperature Change: [tex]\( \Delta T = 1.2 \, \text{°C} \)[/tex]
Heat absorbed by the solution:
[tex]\[ q_{\text{soln}} = \text{Total Mass} \times c_{\text{soln}} \times \Delta T = 84.0 \, \text{g} \times 4.2 \, \text{J/g°C} \times 1.2 \, \text{°C} = 423.36 \, \text{J} \][/tex]
### Step 5: Calculate the heat absorbed by the calorimeter.
Specific Heat Capacity of the calorimeter: [tex]\( c_{\text{cal}} = 4.5 \, \text{J/°C} \)[/tex]
Heat absorbed by the calorimeter:
[tex]\[ q_{\text{cal}} = c_{\text{cal}} \times \Delta T = 4.5 \, \text{J/°C} \times 1.2 \, \text{°C} = 5.4 \, \text{J} \][/tex]
### Step 6: Calculate the total heat change.
[tex]\[ q_{\text{total}} = q_{\text{soln}} + q_{\text{cal}} = 423.36 \, \text{J} + 5.4 \, \text{J} = 428.76 \, \text{J} \][/tex]
### Final Answer:
The heat change for the reaction is [tex]\( 428.76 \, \text{J} \)[/tex].
### Step 1: Calculate the moles of [tex]\( \text{HNO}_3 \)[/tex] and [tex]\( \text{Ba(OH)}_2 \)[/tex].
Given:
- Volume of [tex]\( \text{HNO}_3 \)[/tex] solution: [tex]\( V_{\text{HNO}_3} = 50.0 \)[/tex] mL
- Concentration of [tex]\( \text{HNO}_3 \)[/tex] solution: [tex]\( M_{\text{HNO}_3} = 0.25 \)[/tex] M
Convert the volume to liters:
[tex]\[ \text{HNO}_3 \, \text{(moles)} = V_{\text{HNO}_3} \times M_{\text{HNO}_3} = 50.0 \, \text{mL} \times \frac{0.25 \, \text{mol}}{1000 \, \text{mL}} = 0.0125 \, \text{moles} \][/tex]
Given:
- Volume of [tex]\( \text{Ba(OH)}_2 \)[/tex] solution: [tex]\( V_{\text{Ba(OH)}_2} = 30.0 \)[/tex] mL
- Concentration of [tex]\( \text{Ba(OH)}_2 \)[/tex] solution: [tex]\( M_{\text{Ba(OH)}_2} = 0.40 \)[/tex] M
Convert the volume to liters:
[tex]\[ \text{Ba(OH)}_2 \, \text{(moles)} = V_{\text{Ba(OH)}_2} \times M_{\text{Ba(OH)}_2} = 30.0 \, \text{mL} \times \frac{0.40 \, \text{mol}}{1000 \, \text{mL}} = 0.012 \, \text{moles} \][/tex]
### Step 2: Determine the limiting reactant.
Reaction:
[tex]\[ 2 \text{HNO}_3 + \text{Ba(OH)}_2 \rightarrow 2 \text{H}_2\text{O} + \text{Ba(NO}_3)_2 \][/tex]
Moles ratio [tex]\( \text{HNO}_3 \)[/tex]: [tex]\( \text{Ba(OH)}_2 \)[/tex] is 2:1.
To react with [tex]\( 0.012 \)[/tex] moles of [tex]\( \text{Ba(OH)}_2 \)[/tex]:
The [tex]\( \text{HNO}_3 \)[/tex] needed:
[tex]\[ \text{HNO}_3 \, \text{needed} = 2 \times 0.012 \, \text{moles} = 0.024 \, \text{moles} \][/tex]
Since only 0.0125 moles of [tex]\( \text{HNO}_3 \)[/tex] are available and it's less than 0.024 moles, [tex]\( \text{HNO}_3 \)[/tex] becomes the limiting reactant.
Calculate limiting reactant in terms of equivalence:
[tex]\[ \frac{0.0125}{2} = 0.00625 \, \text{equivalents} \][/tex]
Hence, the limiting reactant is 0.00625 moles (equivalents).
### Step 3: Calculate the total mass of the solution.
Volume:
[tex]\[ \text{Total Volume} = 50.0 \, \text{mL} + 30.0 \, \text{mL} = 80.0 \, \text{mL} \][/tex]
Density: [tex]\( d_{\text{soln}} = 1.05 \, \text{g/mL} \)[/tex]
Total mass:
[tex]\[ \text{Total Mass} = 80.0 \, \text{mL} \times 1.05 \, \text{g/mL} = 84.0 \, \text{g} \][/tex]
### Step 4: Calculate the heat absorbed by the solution.
Specific Heat Capacity of the solution: [tex]\( c_{\text{soln}} = 4.2 \, \text{J/g°C} \)[/tex]
Temperature Change: [tex]\( \Delta T = 1.2 \, \text{°C} \)[/tex]
Heat absorbed by the solution:
[tex]\[ q_{\text{soln}} = \text{Total Mass} \times c_{\text{soln}} \times \Delta T = 84.0 \, \text{g} \times 4.2 \, \text{J/g°C} \times 1.2 \, \text{°C} = 423.36 \, \text{J} \][/tex]
### Step 5: Calculate the heat absorbed by the calorimeter.
Specific Heat Capacity of the calorimeter: [tex]\( c_{\text{cal}} = 4.5 \, \text{J/°C} \)[/tex]
Heat absorbed by the calorimeter:
[tex]\[ q_{\text{cal}} = c_{\text{cal}} \times \Delta T = 4.5 \, \text{J/°C} \times 1.2 \, \text{°C} = 5.4 \, \text{J} \][/tex]
### Step 6: Calculate the total heat change.
[tex]\[ q_{\text{total}} = q_{\text{soln}} + q_{\text{cal}} = 423.36 \, \text{J} + 5.4 \, \text{J} = 428.76 \, \text{J} \][/tex]
### Final Answer:
The heat change for the reaction is [tex]\( 428.76 \, \text{J} \)[/tex].
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.