At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Join our Q&A platform and get accurate answers to all your questions from professionals across multiple disciplines. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To determine the heat of the reaction for the dissociation of [tex]\( KNO_3 \)[/tex] in water in a coffee cup calorimeter, we need to follow several steps involving the specific heat capacities of the solution and the calorimeter, as well as the temperature change.
### Step-by-Step Solution:
1. Given Data:
- Mass of [tex]\( KNO_3 \)[/tex]: [tex]\( 7.5 \, \text{g} \)[/tex]
- Mass of water: [tex]\( 49.0 \, \text{g} \)[/tex]
- Initial temperature: [tex]\( 20.4^\circ \mathrm{C} \)[/tex]
- Final temperature: [tex]\( 9.7^\circ \mathrm{C} \)[/tex]
- Specific heat capacity of solution ([tex]\( C_{\text{soln}} \)[/tex]): [tex]\( 4.18 \, \text{J/g}^\circ \mathrm{C} \)[/tex]
- Heat capacity of the calorimeter ([tex]\( C_{\text{cal}} \)[/tex]): [tex]\( 6.5 \, \text{J/}^\circ \mathrm{C} \)[/tex]
2. Calculate the change in temperature ([tex]\( \Delta T \)[/tex]):
[tex]\[ \Delta T = \text{Final Temperature} - \text{Initial Temperature} = 9.7^\circ \mathrm{C} - 20.4^\circ \mathrm{C} = -10.7^\circ \mathrm{C} \][/tex]
3. Calculate the heat absorbed by the solution ([tex]\( q_{\text{soln}} \)[/tex]):
The total mass of the solution is the sum of the mass of [tex]\( KNO_3 \)[/tex] and the mass of water:
[tex]\[ \text{Total mass of solution} = 7.5 \, \text{g} + 49.0 \, \text{g} = 56.5 \, \text{g} \][/tex]
Using the specific heat capacity of the solution and the change in temperature:
[tex]\[ q_{\text{soln}} = \text{Total mass of solution} \times C_{\text{soln}} \times \Delta T \][/tex]
[tex]\[ q_{\text{soln}} = 56.5 \, \text{g} \times 4.18 \, \text{J/g}^\circ \mathrm{C} \times (-10.7^\circ \mathrm{C}) = -2527.019 \, \text{J} \][/tex]
4. Calculate the heat absorbed by the calorimeter ([tex]\( q_{\text{cal}} \)[/tex]):
[tex]\[ q_{\text{cal}} = C_{\text{cal}} \times \Delta T \][/tex]
[tex]\[ q_{\text{cal}} = 6.5 \, \text{J/}^\circ \mathrm{C} \times (-10.7^\circ \mathrm{C}) = -69.55 \, \text{J} \][/tex]
5. Calculate the total heat of reaction ([tex]\( q_{\text{rxn}} \)[/tex]):
The heat of the reaction is the negative sum of the heat absorbed by the solution and the calorimeter. Since the temperature decreased, the system released heat, so [tex]\( q_{\text{rxn}} \)[/tex] should be positive:
[tex]\[ q_{\text{rxn}} = -(q_{\text{soln}} + q_{\text{cal}}) \][/tex]
[tex]\[ q_{\text{rxn}} = -(-2527.019 \, \text{J} - 69.55 \, \text{J}) = 2596.569 \, \text{J} \][/tex]
### Conclusion:
The heat of the reaction, [tex]\( q_{\text{rxn}} \)[/tex], is [tex]\( +2596.569 \, \text{J} \)[/tex].
### Step-by-Step Solution:
1. Given Data:
- Mass of [tex]\( KNO_3 \)[/tex]: [tex]\( 7.5 \, \text{g} \)[/tex]
- Mass of water: [tex]\( 49.0 \, \text{g} \)[/tex]
- Initial temperature: [tex]\( 20.4^\circ \mathrm{C} \)[/tex]
- Final temperature: [tex]\( 9.7^\circ \mathrm{C} \)[/tex]
- Specific heat capacity of solution ([tex]\( C_{\text{soln}} \)[/tex]): [tex]\( 4.18 \, \text{J/g}^\circ \mathrm{C} \)[/tex]
- Heat capacity of the calorimeter ([tex]\( C_{\text{cal}} \)[/tex]): [tex]\( 6.5 \, \text{J/}^\circ \mathrm{C} \)[/tex]
2. Calculate the change in temperature ([tex]\( \Delta T \)[/tex]):
[tex]\[ \Delta T = \text{Final Temperature} - \text{Initial Temperature} = 9.7^\circ \mathrm{C} - 20.4^\circ \mathrm{C} = -10.7^\circ \mathrm{C} \][/tex]
3. Calculate the heat absorbed by the solution ([tex]\( q_{\text{soln}} \)[/tex]):
The total mass of the solution is the sum of the mass of [tex]\( KNO_3 \)[/tex] and the mass of water:
[tex]\[ \text{Total mass of solution} = 7.5 \, \text{g} + 49.0 \, \text{g} = 56.5 \, \text{g} \][/tex]
Using the specific heat capacity of the solution and the change in temperature:
[tex]\[ q_{\text{soln}} = \text{Total mass of solution} \times C_{\text{soln}} \times \Delta T \][/tex]
[tex]\[ q_{\text{soln}} = 56.5 \, \text{g} \times 4.18 \, \text{J/g}^\circ \mathrm{C} \times (-10.7^\circ \mathrm{C}) = -2527.019 \, \text{J} \][/tex]
4. Calculate the heat absorbed by the calorimeter ([tex]\( q_{\text{cal}} \)[/tex]):
[tex]\[ q_{\text{cal}} = C_{\text{cal}} \times \Delta T \][/tex]
[tex]\[ q_{\text{cal}} = 6.5 \, \text{J/}^\circ \mathrm{C} \times (-10.7^\circ \mathrm{C}) = -69.55 \, \text{J} \][/tex]
5. Calculate the total heat of reaction ([tex]\( q_{\text{rxn}} \)[/tex]):
The heat of the reaction is the negative sum of the heat absorbed by the solution and the calorimeter. Since the temperature decreased, the system released heat, so [tex]\( q_{\text{rxn}} \)[/tex] should be positive:
[tex]\[ q_{\text{rxn}} = -(q_{\text{soln}} + q_{\text{cal}}) \][/tex]
[tex]\[ q_{\text{rxn}} = -(-2527.019 \, \text{J} - 69.55 \, \text{J}) = 2596.569 \, \text{J} \][/tex]
### Conclusion:
The heat of the reaction, [tex]\( q_{\text{rxn}} \)[/tex], is [tex]\( +2596.569 \, \text{J} \)[/tex].
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.