Looking for trustworthy answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Join our Q&A platform to connect with experts dedicated to providing precise answers to your questions in different areas. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
Certainly! To determine the enthalpy change (ΔH) of the reaction in kJ/mol given the data, we need to follow these steps:
### Step 1: Determine the molar mass of [tex]\( KNO_3 \)[/tex].
The molar mass of [tex]\( KNO_3 \)[/tex] is calculated by adding the atomic masses of potassium (K), nitrogen (N), and three oxygen (O) atoms:
[tex]\[ K = 39.1 \text{ g/mol}, \quad N = 14.0 \text{ g/mol}, \quad O_3 = 3 \times 16.0 \text{ g/mol} \][/tex]
[tex]\[ \text{Molar mass of } KNO_3 = 39.1 + 14.0 + 48.0 = 101.1 \text{ g/mol} \][/tex]
### Step 2: Convert the mass of [tex]\( KNO_3 \)[/tex] to moles.
Given mass of [tex]\( KNO_3 \)[/tex] is 7.5 g. To find the number of moles, we divide the mass by the molar mass:
[tex]\[ \text{Moles of } KNO_3 = \frac{7.5 \text{ g}}{101.1 \text{ g/mol}} = 0.074184 \text{ moles} \][/tex]
### Step 3: Convert the energy absorbed from Joules to kJ.
The energy absorbed by the reaction is given as 2597 J. Since 1 kJ = 1000 J, we convert Joules to kilojoules:
[tex]\[ \text{Energy absorbed} = \frac{2597 \text{ J}}{1000 \text{ J/kJ}} = 2.597 \text{ kJ} \][/tex]
### Step 4: Calculate the enthalpy change (ΔH) per mole of [tex]\( KNO_3 \)[/tex].
ΔH is the energy change per mole of substance. We divide the energy absorbed in kJ by the number of moles of [tex]\( KNO_3 \)[/tex]:
[tex]\[ \Delta H = \frac{2.597 \text{ kJ}}{0.074184 \text{ moles}} = 35.008 \text{ kJ/mol} \][/tex]
Since the reaction absorbs energy, ΔH will be positive:
[tex]\[ \Delta H = + 35.01 \text{ kJ/mol (to four significant figures)} \][/tex]
Therefore, the enthalpy change (ΔH) for the given reaction is [tex]\( +35.01 \, \text{kJ/mol} \)[/tex].
### Step 1: Determine the molar mass of [tex]\( KNO_3 \)[/tex].
The molar mass of [tex]\( KNO_3 \)[/tex] is calculated by adding the atomic masses of potassium (K), nitrogen (N), and three oxygen (O) atoms:
[tex]\[ K = 39.1 \text{ g/mol}, \quad N = 14.0 \text{ g/mol}, \quad O_3 = 3 \times 16.0 \text{ g/mol} \][/tex]
[tex]\[ \text{Molar mass of } KNO_3 = 39.1 + 14.0 + 48.0 = 101.1 \text{ g/mol} \][/tex]
### Step 2: Convert the mass of [tex]\( KNO_3 \)[/tex] to moles.
Given mass of [tex]\( KNO_3 \)[/tex] is 7.5 g. To find the number of moles, we divide the mass by the molar mass:
[tex]\[ \text{Moles of } KNO_3 = \frac{7.5 \text{ g}}{101.1 \text{ g/mol}} = 0.074184 \text{ moles} \][/tex]
### Step 3: Convert the energy absorbed from Joules to kJ.
The energy absorbed by the reaction is given as 2597 J. Since 1 kJ = 1000 J, we convert Joules to kilojoules:
[tex]\[ \text{Energy absorbed} = \frac{2597 \text{ J}}{1000 \text{ J/kJ}} = 2.597 \text{ kJ} \][/tex]
### Step 4: Calculate the enthalpy change (ΔH) per mole of [tex]\( KNO_3 \)[/tex].
ΔH is the energy change per mole of substance. We divide the energy absorbed in kJ by the number of moles of [tex]\( KNO_3 \)[/tex]:
[tex]\[ \Delta H = \frac{2.597 \text{ kJ}}{0.074184 \text{ moles}} = 35.008 \text{ kJ/mol} \][/tex]
Since the reaction absorbs energy, ΔH will be positive:
[tex]\[ \Delta H = + 35.01 \text{ kJ/mol (to four significant figures)} \][/tex]
Therefore, the enthalpy change (ΔH) for the given reaction is [tex]\( +35.01 \, \text{kJ/mol} \)[/tex].
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.