madey21
Answered

Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Join our Q&A platform to get precise answers from experts in diverse fields and enhance your understanding. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.

[tex]$19.64 \, \text{g} \, \text{H}_2\text{SO}_4$[/tex] dissociates in [tex]$100.0 \, \text{g}$[/tex] of water in a coffee cup calorimeter. The temperature rose from [tex]$23.12^{\circ} \text{C}$[/tex] to [tex]$57.30^{\circ} \text{C}$[/tex]. What is the heat of the reaction, [tex]$q_{\text{rxn}}$[/tex]?

[tex]\[
\begin{aligned}
\text{H}_2\text{SO}_4 & \rightarrow \text{H}^+ + \text{HSO}_4^{-} \\
C_{\text{soln}} & = 3.50 \, \text{J} / \text{g} \, ^{\circ} \text{C} \\
q_{\text{rxn}} & = [?] \, \text{J}
\end{aligned}
\][/tex]

Enter either a + or - sign AND the magnitude.

Sagot :

To determine the heat of the reaction ([tex]\( q_{\text{rxn}} \)[/tex]), we will follow a series of steps to calculate it based on the given data. Here’s a detailed, step-by-step solution:

1. Initial Data:

- Mass of [tex]\( \text{H}_2\text{SO}_4 \)[/tex]: [tex]\( 19.64 \)[/tex] grams
- Mass of water: [tex]\( 100.0 \)[/tex] grams
- Specific heat capacity of the solution ([tex]\( C_{\text{soln}} \)[/tex]): [tex]\( 3.50 \)[/tex] J/g°C
- Initial temperature: [tex]\( 23.12 \)[/tex] °C
- Final temperature: [tex]\( 57.30 \)[/tex] °C

2. Calculate Total Mass of the Solution:

The total mass of the solution is the sum of the mass of [tex]\( \text{H}_2\text{SO}_4 \)[/tex] and the mass of water:

[tex]\[ \text{Total mass of solution} = \text{mass}_{\text{H}_2\text{SO}_4} + \text{mass}_{\text{water}} \][/tex]

[tex]\[ \text{Total mass of solution} = 19.64 \, \text{grams} + 100.0 \, \text{grams} = 119.64 \, \text{grams} \][/tex]

3. Calculate the Change in Temperature ([tex]\( \Delta T \)[/tex]):

[tex]\[ \Delta T = \text{final temperature} - \text{initial temperature} \][/tex]

[tex]\[ \Delta T = 57.30 \, °C - 23.12 \, °C = 34.18 \, °C \][/tex]

4. Calculate the Heat of the Reaction ([tex]\( q_{\text{rxn}} \)[/tex]) Using [tex]\( q = mc\Delta T \)[/tex]:

[tex]\[ q_{\text{rxn}} = \text{total mass of solution} \times \text{specific heat capacity of solution} \times \Delta T \][/tex]

[tex]\[ q_{\text{rxn}} = 119.64 \, \text{grams} \times 3.50 \, \text{J/g°C} \times 34.18 \, °C \][/tex]

[tex]\[ q_{\text{rxn}} = 119.64 \times 3.50 \times 34.18 = 14312.53 \, \text{J} \][/tex]

The heat of the reaction [tex]\( q_{\text{rxn}} \)[/tex] is positive because the temperature of the solution increased, indicating that the reaction is exothermic and heat was released into the surroundings.

Thus, the heat of the reaction is:

[tex]\[ +14312.53 \, \text{J} \][/tex]
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.