madey21
Answered

Get reliable answers to your questions at Westonci.ca, where our knowledgeable community is always ready to help. Our platform provides a seamless experience for finding precise answers from a network of experienced professionals. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.

[tex]$19.64 \text{ g } H_2SO_4$[/tex] dissociated in [tex]$100.0 \text{ g}$[/tex] of water in a coffee cup calorimeter. The temperature rose from [tex]$23.12^{\circ} \text{C}$[/tex] to [tex]$57.30^{\circ} \text{C}$[/tex]. What is the heat of the reaction, [tex]$q_{\text{rxn}}$[/tex]?

[tex]\[
\begin{array}{c}
H_2SO_4 \rightarrow H^{+} + HSO_4^{-} \\
c_{\text{soln}} = 3.50 \text{ J/g}^{\circ}\text{C} \\
q_{\text{rxn}} = [?] \text{ J}
\end{array}
\][/tex]

Sagot :

To determine the heat of the reaction ([tex]\( q_{\text{rxn}} \)[/tex]), we follow a series of steps to calculate the heat absorbed by the solution upon the dissociation of sulfuric acid ([tex]\( H_2SO_4 \)[/tex]) in water, considering the given information. Here's a detailed step-by-step solution:

### Step 1: Calculate the Total Mass of the Solution

The total mass of the solution is the sum of the mass of [tex]\( H_2SO_4 \)[/tex] and the mass of water.
Given:
- Mass of [tex]\( H_2SO_4 \)[/tex] = [tex]\( 19.64 \)[/tex] grams
- Mass of water = [tex]\( 100.0 \)[/tex] grams

[tex]\[ \text{Total mass} = 19.64 \, \text{grams} + 100.0 \, \text{grams} = 119.64 \, \text{grams} \][/tex]

### Step 2: Calculate the Change in Temperature ([tex]\( \Delta T \)[/tex])

The change in temperature ([tex]\( \Delta T \)[/tex]) is the difference between the final temperature and the initial temperature.
Given:
- Initial temperature = [tex]\( 23.12 \, ^\circ \text{C} \)[/tex]
- Final temperature = [tex]\( 57.30 \, ^\circ \text{C} \)[/tex]

[tex]\[ \Delta T = 57.30 \, ^\circ \text{C} - 23.12 \, ^\circ \text{C} = 34.18 \, ^\circ \text{C} \][/tex]

### Step 3: Calculate the Heat of the Reaction ([tex]\( q_{\text{rxn}} \)[/tex])

To find [tex]\( q_{\text{rxn}} \)[/tex], we use the formula for heat absorbed or released by a solution:

[tex]\[ q_{\text{rxn}} = \text{Total mass} \times c_{\text{soln}} \times \Delta T \][/tex]

Where:
- [tex]\( \text{Total mass} = 119.64 \, \text{grams} \)[/tex]
- [tex]\( c_{\text{soln}} \)[/tex] (specific heat capacity of the solution) = [tex]\( 3.50 \, \text{J/g} \cdot ^\circ \text{C} \)[/tex]
- [tex]\( \Delta T = 34.18 \, ^\circ \text{C} \)[/tex]

Substitute the values into the equation:
[tex]\[ q_{\text{rxn}} = 119.64 \, \text{grams} \times 3.50 \, \text{J/g} \cdot ^\circ \text{C} \times 34.18 \, ^\circ \text{C} \][/tex]

### Step 4: Calculation

Multiplying these values together we get:
[tex]\[ q_{\text{rxn}} \approx 119.64 \times 3.50 \times 34.18 \][/tex]

[tex]\[ q_{\text{rxn}} \approx 14312.53 \, \text{J} \][/tex]

### Final Answer

The heat of the reaction ([tex]\( q_{\text{rxn}} \)[/tex]) is:
[tex]\[ q_{\text{rxn}} \approx 14312.53 \, \text{J} \][/tex]
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.