madey21
Answered

Discover answers to your most pressing questions at Westonci.ca, the ultimate Q&A platform that connects you with expert solutions. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.

[tex]$19.64 \, \text{g} \, \text{H}_2\text{SO}_4$[/tex] dissociating resulted in a heat of reaction equal to [tex]$-14,300 \, \text{J}$[/tex]. What is the enthalpy [tex]$(\Delta H, \, \text{kJ/mol})$[/tex] for the dissociation process?
[tex]\[
\begin{array}{c}
\text{H}_2\text{SO}_4 \rightarrow \text{H}^+ + \text{HSO}_4^- \\
\Delta H = [?] \, \text{kJ/mol}
\end{array}
\][/tex]

Enter either a + or - sign AND the magnitude. Use significant figures.

Sagot :

To determine the enthalpy change [tex]\((\Delta H)\)[/tex] for the dissociation of [tex]\(19.64 \, \text{g}\)[/tex] of [tex]\( \text{H}_2\text{SO}_4 \)[/tex], follow these steps:

1. Calculate the Molar Mass of [tex]\(\text{H}_2\text{SO}_4\)[/tex]:
The molar mass of [tex]\(\text{H}_2\text{SO}_4\)[/tex] is calculated by summing the atomic masses of its components:
[tex]\[ \text{Molar mass of } \text{H}_2\text{SO}_4 = 2(1.01) + 32.07 + 4(16.00) \, \text{g/mol} = 98.09 \, \text{g/mol} \][/tex]

2. Convert Grams to Moles:
Using the mass of [tex]\( \text{H}_2\text{SO}_4 \)[/tex]:
[tex]\[ \text{Moles of } \text{H}_2\text{SO}_4 = \frac{19.64 \, \text{g}}{98.09 \, \text{g/mol}} \approx 0.2002 \, \text{mol} \][/tex]

3. Enthalpy Change Calculation:
Given the heat of reaction (ΔH) for the dissociation process is [tex]\(-14300 \, \text{J}\)[/tex]. First, convert this to kilojoules:
[tex]\[ \Delta H = -14300 \, \text{J} \times \frac{1 \, \text{kJ}}{1000 \, \text{J}} = -14.30 \, \text{kJ} \][/tex]

4. Calculate ΔH in kJ per mole:
Use the moles calculated in step 2 to find [tex]\(\Delta H\)[/tex] per mole of [tex]\( \text{H}_2\text{SO}_4 \)[/tex]:
[tex]\[ \Delta H \text{ (kJ/mol)} = \frac{-14.30 \, \text{kJ}}{0.2002 \, \text{mol}} \approx -71.42 \, \text{kJ/mol} \][/tex]

Final Answer:
[tex]\(\Delta H\)[/tex] for the dissociation process of [tex]\(\text{H}_2\text{SO}_4\)[/tex] is [tex]\(-71.42 \, \text{kJ/mol}\)[/tex].
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We appreciate your time. Please come back anytime for the latest information and answers to your questions. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.