madey21
Answered

Westonci.ca is your go-to source for answers, with a community ready to provide accurate and timely information. Discover a wealth of knowledge from experts across different disciplines on our comprehensive Q&A platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.

[tex]4.0 \, \text{g} \, NH_4Br[/tex] dissociates in [tex]46.0 \, \text{g}[/tex] of water in a coffee cup calorimeter. The thermometer reading changes from [tex]21.3^{\circ} \text{C}[/tex] to [tex]18.0^{\circ} \text{C}[/tex]. What is the enthalpy of the reaction?

[tex]\[
\begin{array}{c}
NH_4Br \rightarrow NH_4^{+} + Br^{-} \\
c_{\text{cal}} = 5.7 \, \text{J}/^{\circ} \text{C} \quad C_{\text{soln}} = 4.18 \, \text{J}/ \text{g} \, ^{\circ} \text{C} \\
\Delta H_{\text{rxn}} = [?] \, \text{kJ}/ \text{mol}
\end{array}
\][/tex]

Enter either a [tex]+[/tex] or [tex]-[/tex] sign AND the magnitude. Do not round until the end. Use significant figures.


Sagot :

To determine the enthalpy change of the reaction ([tex]\( \Delta H_{\text{rxn}} \)[/tex]) for the dissociation of NH[tex]\(_4\)[/tex]Br in water, follow these steps:

### Step 1: Find the Mass of the Solution
The total mass of the solution is the sum of the mass of NH[tex]\(_4\)[/tex]Br and the mass of water.
- Mass of NH[tex]\(_4\)[/tex]Br: [tex]\( 4.0 \, \text{g} \)[/tex]
- Mass of water: [tex]\( 46.0 \, \text{g} \)[/tex]

[tex]\[ \text{Mass of solution} = 4.0 \, \text{g} + 46.0 \, \text{g} = 50.0 \, \text{g} \][/tex]

### Step 2: Calculate the Change in Temperature ([tex]\( \Delta T \)[/tex])
The change in temperature is the final temperature minus the initial temperature.
- Initial temperature: [tex]\( 21.3^\circ \text{C} \)[/tex]
- Final temperature: [tex]\( 18.0^\circ \text{C} \)[/tex]

[tex]\[ \Delta T = 18.0^\circ \text{C} - 21.3^\circ \text{C} = -3.3^\circ \text{C} \][/tex]

### Step 3: Calculate the Heat Absorbed/Released by the Solution
The heat ([tex]\( q \)[/tex]) absorbed or released by the solution is given by:
[tex]\[ q_{\text{solution}} = \text{mass of solution} \times \text{specific heat of the solution} \times \Delta T \][/tex]

- Specific heat of solution ([tex]\( C_{\text{soln}} \)[/tex]): [tex]\( 4.18 \, \text{J/g}^\circ \text{C} \)[/tex]
- Mass of solution: [tex]\( 50.0 \, \text{g} \)[/tex]
- [tex]\( \Delta T \)[/tex]: [tex]\( -3.3^\circ \text{C} \)[/tex]

[tex]\[ q_{\text{solution}} = 50.0 \, \text{g} \times 4.18 \, \text{J/g}^\circ \text{C} \times (-3.3^\circ \text{C}) = -689.7 \, \text{J} \][/tex]

### Step 4: Calculate the Heat Absorbed/Released by the Calorimeter
The heat ([tex]\( q \)[/tex]) absorbed or released by the calorimeter is given by:
[tex]\[ q_{\text{calorimeter}} = \text{heat capacity of calorimeter} \times \Delta T \][/tex]

- Heat capacity of calorimeter ([tex]\( C_{\text{cal}} \)[/tex]): [tex]\( 5.7 \, \text{J/}^\circ \text{C} \)[/tex]
- [tex]\( \Delta T \)[/tex]: [tex]\( -3.3^\circ \text{C} \)[/tex]

[tex]\[ q_{\text{calorimeter}} = 5.7 \, \text{J/}^\circ \text{C} \times (-3.3^\circ \text{C}) = -18.81 \, \text{J} \][/tex]

### Step 5: Calculate the Total Heat Absorbed/Released
The total heat ([tex]\( q_{\text{total}} \)[/tex]) absorbed or released by the system is the sum of the heat by the solution and the calorimeter.

[tex]\[ q_{\text{total}} = q_{\text{solution}} + q_{\text{calorimeter}} \][/tex]

[tex]\[ q_{\text{total}} = -689.7 \, \text{J} + (-18.81 \, \text{J}) = -708.51 \, \text{J} \][/tex]

Convert [tex]\( q_{\text{total}} \)[/tex] from J to kJ.
[tex]\[ q_{\text{total}} = -708.51 \, \text{J} \times \left( \frac{1 \, \text{kJ}}{1000 \, \text{J}} \right) = -0.70851 \, \text{kJ} \][/tex]

### Step 6: Calculate the Moles of NH[tex]\(_4\)[/tex]Br
First, find the molar mass of NH[tex]\(_4\)[/tex]Br.
- Molar mass of NH[tex]\(_4\)[/tex]Br: [tex]\( 97.94 \, \text{g/mol} \)[/tex]

Determine the moles of NH[tex]\(_4\)[/tex]Br used:
[tex]\[ \text{Moles of NH}_4\text{Br} = \frac{\text{Mass of NH}_4\text{Br}}{\text{Molar Mass of NH}_4\text{Br}} \][/tex]

[tex]\[ \text{Moles of NH}_4\text{Br} = \frac{4.0 \, \text{g}}{97.94 \, \text{g/mol}} = 0.040841331 \, \text{mol} \][/tex]

### Step 7: Determine the Enthalpy Change ([tex]\( \Delta H_{\text{rxn}} \)[/tex])
Finally, calculate the enthalpy change per mole of NH[tex]\(_4\)[/tex]Br.
[tex]\[ \Delta H_{\text{rxn}} = \frac{q_{\text{total}}}{\text{moles of NH}_4\text{Br}} \][/tex]

[tex]\[ \Delta H_{\text{rxn}} = \frac{-0.70851 \, \text{kJ}}{0.040841331 \, \text{mol}} = -17.34786735 \, \text{kJ/mol} \][/tex]

### Final Answer
[tex]\[ \Delta H_{\text{rxn}} = -17.35 \, \text{kJ/mol} \][/tex]

The enthalpy change of the reaction is [tex]\( -17.35 \, \text{kJ/mol} \)[/tex]. This indicates the process is exothermic, as indicated by the negative sign.
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.