Find the best answers to your questions at Westonci.ca, where experts and enthusiasts provide accurate, reliable information. Experience the ease of finding accurate answers to your questions from a knowledgeable community of professionals. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To find the cost function when given the marginal cost function [tex]\( C'(x) = x^{1/4} + 6 \)[/tex] and the information that 16 units cost [tex]$132, we'll follow these steps:
1. Integrate the Marginal Cost Function:
The cost function \( C(x) \) is the integral of the marginal cost function \( C'(x) \). So, we need to integrate \( x^{1/4} + 6 \).
\[
C(x) = \int (x^{1/4} + 6) \, dx
\]
2. Compute the Indefinite Integral:
Integrate \( x^{1/4} \) and \( 6 \) separately.
\[
\int x^{1/4} \, dx
\]
Recall that the integral of \( x^n \) is \( \frac{x^{n+1}}{n+1} \).
\[
\int x^{1/4} \, dx = \frac{x^{1/4 + 1}}{1/4 + 1} = \frac{x^{5/4}}{5/4} = \frac{4}{5} x^{5/4}
\]
Now, integrate the constant 6:
\[
\int 6 \, dx = 6x
\]
Combining these, we get the indefinite integral of \( C'(x) \):
\[
C(x) = \frac{4}{5} x^{5/4} + 6x + C
\]
Here, \( C \) represents the constant of integration.
3. Determine the Constant of Integration \( C \):
Use the given condition that 16 units cost $[/tex]132. This means [tex]\( C(16) = 132 \)[/tex].
Substitute [tex]\( x = 16 \)[/tex] and [tex]\( C(16) = 132 \)[/tex]:
[tex]\[ 132 = \frac{4}{5} (16)^{5/4} + 6(16) + C \][/tex]
Calculate [tex]\( (16)^{5/4} \)[/tex]:
[tex]\[ 16 = 2^4 \implies 16^{5/4} = (2^4)^{5/4} = 2^5 = 32 \][/tex]
Substitute [tex]\( 16^{5/4} = 32 \)[/tex] into the equation:
[tex]\[ 132 = \frac{4}{5} \cdot 32 + 96 + C \][/tex]
Simplify:
[tex]\[ 132 = \frac{128}{5} + 96 + C \][/tex]
Combine the terms:
[tex]\[ 132 = 25.6 + 96 + C \][/tex]
[tex]\[ 132 = 121.6 + C \][/tex]
Solve for [tex]\( C \)[/tex]:
[tex]\[ C = 132 - 121.6 = 10.4 \][/tex]
4. Write the Final Cost Function:
Substitute [tex]\( C = 10.4 \)[/tex] back into the cost function:
[tex]\[ C(x) = \frac{4}{5} x^{5/4} + 6x + 10.4 \][/tex]
Thus, the cost function is:
[tex]\[ C(x) = \frac{4}{5} x^{5/4} + 6x + 10.4 \][/tex]
Substitute [tex]\( x = 16 \)[/tex] and [tex]\( C(16) = 132 \)[/tex]:
[tex]\[ 132 = \frac{4}{5} (16)^{5/4} + 6(16) + C \][/tex]
Calculate [tex]\( (16)^{5/4} \)[/tex]:
[tex]\[ 16 = 2^4 \implies 16^{5/4} = (2^4)^{5/4} = 2^5 = 32 \][/tex]
Substitute [tex]\( 16^{5/4} = 32 \)[/tex] into the equation:
[tex]\[ 132 = \frac{4}{5} \cdot 32 + 96 + C \][/tex]
Simplify:
[tex]\[ 132 = \frac{128}{5} + 96 + C \][/tex]
Combine the terms:
[tex]\[ 132 = 25.6 + 96 + C \][/tex]
[tex]\[ 132 = 121.6 + C \][/tex]
Solve for [tex]\( C \)[/tex]:
[tex]\[ C = 132 - 121.6 = 10.4 \][/tex]
4. Write the Final Cost Function:
Substitute [tex]\( C = 10.4 \)[/tex] back into the cost function:
[tex]\[ C(x) = \frac{4}{5} x^{5/4} + 6x + 10.4 \][/tex]
Thus, the cost function is:
[tex]\[ C(x) = \frac{4}{5} x^{5/4} + 6x + 10.4 \][/tex]
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.