Explore Westonci.ca, the premier Q&A site that helps you find precise answers to your questions, no matter the topic. Join our platform to connect with experts ready to provide precise answers to your questions in various areas. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To find the value of [tex]\( y \)[/tex] in the given system of equations, let's follow these steps:
The system of equations is:
[tex]\[ \begin{cases} 2x - 6y = 12 \\ -6x + 14y = 42 \end{cases} \][/tex]
### Step 1: Simplify the equations if possible
First, check if the equations can be simplified:
For the first equation:
[tex]\[ 2x - 6y = 12 \][/tex]
Divide both sides by 2:
[tex]\[ x - 3y = 6 \][/tex]
For the second equation:
[tex]\[ -6x + 14y = 42 \][/tex]
Divide both sides by 2 for simplicity:
[tex]\[ -3x + 7y = 21 \][/tex]
So, the simplified system of equations is:
[tex]\[ \begin{cases} x - 3y = 6 \\ -3x + 7y = 21 \end{cases} \][/tex]
### Step 2: Solve one equation for one variable
Solve the first equation for [tex]\( x \)[/tex]:
[tex]\[ x - 3y = 6 \][/tex]
[tex]\[ x = 6 + 3y \][/tex]
### Step 3: Substitute this expression into the second equation
Substitute [tex]\( x = 6 + 3y \)[/tex] into the second equation:
[tex]\[ -3(6 + 3y) + 7y = 21 \][/tex]
Expand and simplify:
[tex]\[ -18 - 9y + 7y = 21 \][/tex]
Combine like terms:
[tex]\[ -18 - 2y = 21 \][/tex]
### Step 4: Solve for [tex]\( y \)[/tex]
Add 18 to both sides:
[tex]\[ -2y = 39 \][/tex]
Divide both sides by -2:
[tex]\[ y = -\frac{39}{2} \][/tex]
Thus, the value of [tex]\( y \)[/tex] is:
[tex]\[ y = -\frac{39}{2} \][/tex]
The system of equations is:
[tex]\[ \begin{cases} 2x - 6y = 12 \\ -6x + 14y = 42 \end{cases} \][/tex]
### Step 1: Simplify the equations if possible
First, check if the equations can be simplified:
For the first equation:
[tex]\[ 2x - 6y = 12 \][/tex]
Divide both sides by 2:
[tex]\[ x - 3y = 6 \][/tex]
For the second equation:
[tex]\[ -6x + 14y = 42 \][/tex]
Divide both sides by 2 for simplicity:
[tex]\[ -3x + 7y = 21 \][/tex]
So, the simplified system of equations is:
[tex]\[ \begin{cases} x - 3y = 6 \\ -3x + 7y = 21 \end{cases} \][/tex]
### Step 2: Solve one equation for one variable
Solve the first equation for [tex]\( x \)[/tex]:
[tex]\[ x - 3y = 6 \][/tex]
[tex]\[ x = 6 + 3y \][/tex]
### Step 3: Substitute this expression into the second equation
Substitute [tex]\( x = 6 + 3y \)[/tex] into the second equation:
[tex]\[ -3(6 + 3y) + 7y = 21 \][/tex]
Expand and simplify:
[tex]\[ -18 - 9y + 7y = 21 \][/tex]
Combine like terms:
[tex]\[ -18 - 2y = 21 \][/tex]
### Step 4: Solve for [tex]\( y \)[/tex]
Add 18 to both sides:
[tex]\[ -2y = 39 \][/tex]
Divide both sides by -2:
[tex]\[ y = -\frac{39}{2} \][/tex]
Thus, the value of [tex]\( y \)[/tex] is:
[tex]\[ y = -\frac{39}{2} \][/tex]
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.