Find the best answers to your questions at Westonci.ca, where experts and enthusiasts provide accurate, reliable information. Explore thousands of questions and answers from knowledgeable experts in various fields on our Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To determine the enthalpy of combustion for benzoic acid, follow these steps:
1. Identify the energy released and the number of moles reacted:
- Energy released = 49,936.64 joules
- Moles of benzoic acid reacted = 0.015475 moles
2. Convert the energy released from joules to kilojoules (since enthalpy is typically expressed in kilojoules per mole):
- Energy in kilojoules = [tex]\( \frac{49,936.64 \text{ joules}}{1000} = 49.93664 \text{ kilojoules} \)[/tex]
3. Calculate the enthalpy change (ΔH) for the combustion reaction:
[tex]\[ \Delta H_{\text{rxn}} = \frac{\text{Energy released in kJ}}{\text{Moles reacted}} = \frac{49.93664 \text{ kJ}}{0.015475 \text{ mol}} \][/tex]
4. Perform the division to find the enthalpy of combustion:
[tex]\[ \Delta H_{\text{rxn}} = \frac{49.93664 \text{ kJ}}{0.015475 \text{ mol}} \approx 3226.923 \text{ }\frac{\text{kJ}}{\text{mol}} \][/tex]
5. Consider the sign of the enthalpy change:
Since energy is released in the reaction, the enthalpy change for combustion is negative.
6. Express the enthalpy of combustion to three significant figures:
[tex]\[ \Delta H_{\text{rxn}} = -3226.923 \text{ }\frac{\text{kJ}}{\text{mol}} \approx -3226.923 \text{ }\frac{\text{kJ}}{\text{mol}} \][/tex]
Rounded to three significant figures, the answer is:
[tex]\[ \boxed{-3226.923 \text{ }\frac{\text{kJ}}{\text{mol}}} \][/tex]
So, the enthalpy of combustion for benzoic acid is [tex]\( -3226.923 \text{ }\frac{\text{kJ}}{\text{mol}} \)[/tex] with the correct sign and magnitude.
1. Identify the energy released and the number of moles reacted:
- Energy released = 49,936.64 joules
- Moles of benzoic acid reacted = 0.015475 moles
2. Convert the energy released from joules to kilojoules (since enthalpy is typically expressed in kilojoules per mole):
- Energy in kilojoules = [tex]\( \frac{49,936.64 \text{ joules}}{1000} = 49.93664 \text{ kilojoules} \)[/tex]
3. Calculate the enthalpy change (ΔH) for the combustion reaction:
[tex]\[ \Delta H_{\text{rxn}} = \frac{\text{Energy released in kJ}}{\text{Moles reacted}} = \frac{49.93664 \text{ kJ}}{0.015475 \text{ mol}} \][/tex]
4. Perform the division to find the enthalpy of combustion:
[tex]\[ \Delta H_{\text{rxn}} = \frac{49.93664 \text{ kJ}}{0.015475 \text{ mol}} \approx 3226.923 \text{ }\frac{\text{kJ}}{\text{mol}} \][/tex]
5. Consider the sign of the enthalpy change:
Since energy is released in the reaction, the enthalpy change for combustion is negative.
6. Express the enthalpy of combustion to three significant figures:
[tex]\[ \Delta H_{\text{rxn}} = -3226.923 \text{ }\frac{\text{kJ}}{\text{mol}} \approx -3226.923 \text{ }\frac{\text{kJ}}{\text{mol}} \][/tex]
Rounded to three significant figures, the answer is:
[tex]\[ \boxed{-3226.923 \text{ }\frac{\text{kJ}}{\text{mol}}} \][/tex]
So, the enthalpy of combustion for benzoic acid is [tex]\( -3226.923 \text{ }\frac{\text{kJ}}{\text{mol}} \)[/tex] with the correct sign and magnitude.
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.