Welcome to Westonci.ca, your one-stop destination for finding answers to all your questions. Join our expert community now! Discover a wealth of knowledge from experts across different disciplines on our comprehensive Q&A platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To determine the molality of a [tex]$D$[/tex]-glucose solution prepared by dissolving [tex]\(54.0\)[/tex] grams of [tex]\(D\)[/tex]-glucose ([tex]\(C_6H_{12}O_6\)[/tex]) in [tex]\(125.9\)[/tex] grams of water, follow these detailed steps:
1. Determine the molar mass of [tex]\(D\)[/tex]-glucose ([tex]\(C_6H_{12}O_6\)[/tex]):
The molar mass is given as [tex]\(180.16\)[/tex] g/mol.
2. Calculate the number of moles of [tex]\(D\)[/tex]-glucose:
Use the formula:
[tex]\[ \text{moles of \(D\)-glucose} = \frac{\text{mass of \(D\)-glucose}}{\text{molar mass of \(D\)-glucose}} \][/tex]
Given the mass of [tex]\(D\)[/tex]-glucose ([tex]\(54.0\)[/tex] grams):
[tex]\[ \text{moles of \(D\)-glucose} = \frac{54.0 \, \text{g}}{180.16 \, \text{g/mol}} \approx 0.2997 \, \text{mol} \][/tex]
3. Convert the mass of the solvent (water) to kilograms:
Given the mass of the solvent ([tex]\(125.9\)[/tex] grams):
[tex]\[ \text{solvent mass} = \frac{125.9 \, \text{g}}{1000} = 0.1259 \, \text{kg} \][/tex]
4. Calculate the molality ([tex]\(m\)[/tex]) of the solution:
Molality is defined as the number of moles of solute per kilogram of solvent. Use the formula:
[tex]\[ \text{molality} = \frac{\text{moles of solute}}{\text{mass of solvent in kg}} \][/tex]
Substitute the calculated values:
[tex]\[ \text{molality} = \frac{0.2997 \, \text{mol}}{0.1259 \, \text{kg}} \approx 2.38 \, m \][/tex]
Therefore, the molality of the [tex]\(D\)[/tex]-glucose solution is [tex]\(2.38 \, m\)[/tex]. The correct answer is:
[tex]\[ \boxed{2.38 \, m} \][/tex]
1. Determine the molar mass of [tex]\(D\)[/tex]-glucose ([tex]\(C_6H_{12}O_6\)[/tex]):
The molar mass is given as [tex]\(180.16\)[/tex] g/mol.
2. Calculate the number of moles of [tex]\(D\)[/tex]-glucose:
Use the formula:
[tex]\[ \text{moles of \(D\)-glucose} = \frac{\text{mass of \(D\)-glucose}}{\text{molar mass of \(D\)-glucose}} \][/tex]
Given the mass of [tex]\(D\)[/tex]-glucose ([tex]\(54.0\)[/tex] grams):
[tex]\[ \text{moles of \(D\)-glucose} = \frac{54.0 \, \text{g}}{180.16 \, \text{g/mol}} \approx 0.2997 \, \text{mol} \][/tex]
3. Convert the mass of the solvent (water) to kilograms:
Given the mass of the solvent ([tex]\(125.9\)[/tex] grams):
[tex]\[ \text{solvent mass} = \frac{125.9 \, \text{g}}{1000} = 0.1259 \, \text{kg} \][/tex]
4. Calculate the molality ([tex]\(m\)[/tex]) of the solution:
Molality is defined as the number of moles of solute per kilogram of solvent. Use the formula:
[tex]\[ \text{molality} = \frac{\text{moles of solute}}{\text{mass of solvent in kg}} \][/tex]
Substitute the calculated values:
[tex]\[ \text{molality} = \frac{0.2997 \, \text{mol}}{0.1259 \, \text{kg}} \approx 2.38 \, m \][/tex]
Therefore, the molality of the [tex]\(D\)[/tex]-glucose solution is [tex]\(2.38 \, m\)[/tex]. The correct answer is:
[tex]\[ \boxed{2.38 \, m} \][/tex]
We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.