Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Discover reliable solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To determine the molality of a [tex]$D$[/tex]-glucose solution prepared by dissolving [tex]\(54.0\)[/tex] grams of [tex]\(D\)[/tex]-glucose ([tex]\(C_6H_{12}O_6\)[/tex]) in [tex]\(125.9\)[/tex] grams of water, follow these detailed steps:
1. Determine the molar mass of [tex]\(D\)[/tex]-glucose ([tex]\(C_6H_{12}O_6\)[/tex]):
The molar mass is given as [tex]\(180.16\)[/tex] g/mol.
2. Calculate the number of moles of [tex]\(D\)[/tex]-glucose:
Use the formula:
[tex]\[ \text{moles of \(D\)-glucose} = \frac{\text{mass of \(D\)-glucose}}{\text{molar mass of \(D\)-glucose}} \][/tex]
Given the mass of [tex]\(D\)[/tex]-glucose ([tex]\(54.0\)[/tex] grams):
[tex]\[ \text{moles of \(D\)-glucose} = \frac{54.0 \, \text{g}}{180.16 \, \text{g/mol}} \approx 0.2997 \, \text{mol} \][/tex]
3. Convert the mass of the solvent (water) to kilograms:
Given the mass of the solvent ([tex]\(125.9\)[/tex] grams):
[tex]\[ \text{solvent mass} = \frac{125.9 \, \text{g}}{1000} = 0.1259 \, \text{kg} \][/tex]
4. Calculate the molality ([tex]\(m\)[/tex]) of the solution:
Molality is defined as the number of moles of solute per kilogram of solvent. Use the formula:
[tex]\[ \text{molality} = \frac{\text{moles of solute}}{\text{mass of solvent in kg}} \][/tex]
Substitute the calculated values:
[tex]\[ \text{molality} = \frac{0.2997 \, \text{mol}}{0.1259 \, \text{kg}} \approx 2.38 \, m \][/tex]
Therefore, the molality of the [tex]\(D\)[/tex]-glucose solution is [tex]\(2.38 \, m\)[/tex]. The correct answer is:
[tex]\[ \boxed{2.38 \, m} \][/tex]
1. Determine the molar mass of [tex]\(D\)[/tex]-glucose ([tex]\(C_6H_{12}O_6\)[/tex]):
The molar mass is given as [tex]\(180.16\)[/tex] g/mol.
2. Calculate the number of moles of [tex]\(D\)[/tex]-glucose:
Use the formula:
[tex]\[ \text{moles of \(D\)-glucose} = \frac{\text{mass of \(D\)-glucose}}{\text{molar mass of \(D\)-glucose}} \][/tex]
Given the mass of [tex]\(D\)[/tex]-glucose ([tex]\(54.0\)[/tex] grams):
[tex]\[ \text{moles of \(D\)-glucose} = \frac{54.0 \, \text{g}}{180.16 \, \text{g/mol}} \approx 0.2997 \, \text{mol} \][/tex]
3. Convert the mass of the solvent (water) to kilograms:
Given the mass of the solvent ([tex]\(125.9\)[/tex] grams):
[tex]\[ \text{solvent mass} = \frac{125.9 \, \text{g}}{1000} = 0.1259 \, \text{kg} \][/tex]
4. Calculate the molality ([tex]\(m\)[/tex]) of the solution:
Molality is defined as the number of moles of solute per kilogram of solvent. Use the formula:
[tex]\[ \text{molality} = \frac{\text{moles of solute}}{\text{mass of solvent in kg}} \][/tex]
Substitute the calculated values:
[tex]\[ \text{molality} = \frac{0.2997 \, \text{mol}}{0.1259 \, \text{kg}} \approx 2.38 \, m \][/tex]
Therefore, the molality of the [tex]\(D\)[/tex]-glucose solution is [tex]\(2.38 \, m\)[/tex]. The correct answer is:
[tex]\[ \boxed{2.38 \, m} \][/tex]
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.