Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
Certainly! Here is the detailed, step-by-step solution for calculating the enthalpy change ([tex]\(\Delta H\)[/tex]) for the combustion of the hydrocarbon given the provided data.
### Step 1: Understand the given data
- Heat released ([tex]\(q_{\text{cal}}\)[/tex]) during combustion: 6191.78 Joules.
- Number of moles ([tex]\(n\)[/tex]) of the substance: 0.0019243682 moles.
### Step 2: Formula for Enthalpy change
The enthalpy change [tex]\(\Delta H\)[/tex] in kilojoules per mole ([tex]\(kJ/mol\)[/tex]) can be calculated using the formula:
[tex]\[ \Delta H = \frac{q_{\text{cal}}}{n} \][/tex]
### Step 3: Convert Joules to Kilojoules
Since 1 Joule = 0.001 Kilojoules, we first convert the heat released from Joules to Kilojoules:
[tex]\[ 6191.78 \, \text{J} = 6191.78 \times 0.001 \, \text{kJ} \][/tex]
[tex]\[ 6191.78 \, \text{J} = 6.19178 \, \text{kJ} \][/tex]
### Step 4: Calculate Enthalpy Change in [tex]\(kJ/mol\)[/tex]
Now, we divide the heat released (in [tex]\(kJ\)[/tex]) by the number of moles ([tex]\(n\)[/tex]):
[tex]\[ \Delta H = \frac{6.19178 \, \text{kJ}}{0.0019243682 \, \text{mol}} \][/tex]
[tex]\[ \Delta H = 3217.565 \, \text{kJ/mol} \][/tex]
### Step 5: Determine the sign of the Enthalpy Change
For combustion reactions, the enthalpy change is typically exothermic, so the sign of [tex]\(\Delta H\)[/tex] is negative:
[tex]\[ \Delta H = -3217.565 \, \text{kJ/mol} \][/tex]
### Step 6: Round to Three Significant Figures
Finally, we round the value to three significant figures:
[tex]\[ \Delta H = -3217.565 \approx -3218 \, \text{kJ/mol} \][/tex]
Therefore, the enthalpy change [tex]\(\Delta H\)[/tex] for the combustion of the hydrocarbon is [tex]\(-3217.565 \, kJ / mol\)[/tex], rounded to three significant figures, which is [tex]\(-3218 \, kJ / mol\)[/tex].
### Step 1: Understand the given data
- Heat released ([tex]\(q_{\text{cal}}\)[/tex]) during combustion: 6191.78 Joules.
- Number of moles ([tex]\(n\)[/tex]) of the substance: 0.0019243682 moles.
### Step 2: Formula for Enthalpy change
The enthalpy change [tex]\(\Delta H\)[/tex] in kilojoules per mole ([tex]\(kJ/mol\)[/tex]) can be calculated using the formula:
[tex]\[ \Delta H = \frac{q_{\text{cal}}}{n} \][/tex]
### Step 3: Convert Joules to Kilojoules
Since 1 Joule = 0.001 Kilojoules, we first convert the heat released from Joules to Kilojoules:
[tex]\[ 6191.78 \, \text{J} = 6191.78 \times 0.001 \, \text{kJ} \][/tex]
[tex]\[ 6191.78 \, \text{J} = 6.19178 \, \text{kJ} \][/tex]
### Step 4: Calculate Enthalpy Change in [tex]\(kJ/mol\)[/tex]
Now, we divide the heat released (in [tex]\(kJ\)[/tex]) by the number of moles ([tex]\(n\)[/tex]):
[tex]\[ \Delta H = \frac{6.19178 \, \text{kJ}}{0.0019243682 \, \text{mol}} \][/tex]
[tex]\[ \Delta H = 3217.565 \, \text{kJ/mol} \][/tex]
### Step 5: Determine the sign of the Enthalpy Change
For combustion reactions, the enthalpy change is typically exothermic, so the sign of [tex]\(\Delta H\)[/tex] is negative:
[tex]\[ \Delta H = -3217.565 \, \text{kJ/mol} \][/tex]
### Step 6: Round to Three Significant Figures
Finally, we round the value to three significant figures:
[tex]\[ \Delta H = -3217.565 \approx -3218 \, \text{kJ/mol} \][/tex]
Therefore, the enthalpy change [tex]\(\Delta H\)[/tex] for the combustion of the hydrocarbon is [tex]\(-3217.565 \, kJ / mol\)[/tex], rounded to three significant figures, which is [tex]\(-3218 \, kJ / mol\)[/tex].
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.