At Westonci.ca, we provide reliable answers to your questions from a community of experts. Start exploring today! Get detailed and accurate answers to your questions from a community of experts on our comprehensive Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
Let's tackle the question step by step.
### Determining the Number of Terms in the Given Series:
#### Series (a): [tex]\(5 + 8 + 11 + \ldots + 320\)[/tex]
1. Identify the first term ([tex]\(a_1\)[/tex]) and the common difference ([tex]\(d\)[/tex]):
[tex]\[ a_1 = 5, \quad d = 3 \][/tex]
2. Identify the last term ([tex]\(a_n\)[/tex]):
[tex]\[ a_n = 320 \][/tex]
3. Use the formula for the [tex]\(n\)[/tex]-th term of an arithmetic series:
[tex]\[ a_n = a_1 + (n - 1) \cdot d \][/tex]
Rearrange to solve for [tex]\(n\)[/tex]:
[tex]\[ n = \frac{a_n - a_1}{d} + 1 \][/tex]
4. Substitute the given values:
[tex]\[ n = \frac{320 - 5}{3} + 1 = \frac{315}{3} + 1 = 105 + 1 = 106 \][/tex]
So, the series has 106 terms.
#### Series (c): [tex]\(10 + 13 + 16 + \ldots + 49\)[/tex]
1. Identify the first term ([tex]\(a_1\)[/tex]) and the common difference ([tex]\(d\)[/tex]):
[tex]\[ a_1 = 10, \quad d = 3 \][/tex]
2. Identify the last term ([tex]\(a_n\)[/tex]):
[tex]\[ a_n = 49 \][/tex]
3. Use the formula for the [tex]\(n\)[/tex]-th term of an arithmetic series:
[tex]\[ a_n = a_1 + (n - 1) \cdot d \][/tex]
Rearrange to solve for [tex]\(n\)[/tex]:
[tex]\[ n = \frac{a_n - a_1}{d} + 1 \][/tex]
4. Substitute the given values:
[tex]\[ n = \frac{49 - 10}{3} + 1 = \frac{39}{3} + 1 = 13 + 1 = 14 \][/tex]
So, the series has 14 terms.
#### Series (b) and (d) cannot be solved as they do not provide sufficient information (e.g., the last term of the series is not given).
### Determine the Common Difference and First Term for the Specific Conditions:
#### (a) [tex]\(10^{\text{th}}\)[/tex] Term [tex]\(= 23\)[/tex] and [tex]\(32^{\text{nd}}\)[/tex] Term [tex]\(= 67\)[/tex]:
1. Use the general formula for the [tex]\(n\)[/tex]-th term of an arithmetic series:
[tex]\[ a_n = a_1 + (n - 1) \cdot d \][/tex]
2. Write two equations using the given terms:
[tex]\[ \begin{cases} a_1 + 9d = 23 \quad & \text{(for the 10th term)} \\ a_1 + 31d = 67 \quad & \text{(for the 32nd term)} \end{cases} \][/tex]
3. Subtract the first equation from the second:
[tex]\[ (a_1 + 31d) - (a_1 + 9d) = 67 - 23 \\ 22d = 44 \\ \][/tex]
4. Solve for [tex]\(d\)[/tex]:
[tex]\[ d = \frac{44}{22} = 2 \][/tex]
5. Substitute [tex]\(d\)[/tex] back into one of the original equations to find [tex]\(a_1\)[/tex]:
[tex]\[ a_1 + 9 \cdot d = 23 \\ a_1 + 9 \cdot 2 = 23 \\ a_1 + 18 = 23 \\ a_1 = 23 - 18 \\ a_1 = 5 \][/tex]
Thus, the first term [tex]\(a_1 = 5\)[/tex] and the common difference [tex]\(d = 2\)[/tex].
#### (b) [tex]\(11^{\text{th}}\)[/tex] Term [tex]\(= 5\)[/tex]
The provided information is incomplete and does not allow us to find the first term and the common difference. More information is required to solve this part.
### Summary:
- Series (a) has 106 terms.
- Series (c) has 14 terms.
- The first term and common difference for the series whose [tex]\(10^{\text{th}}\)[/tex] term is 23 and [tex]\(32^{\text{nd}}\)[/tex] term is 67 are 5 and 2, respectively.
- Insufficient information is provided to solve for series (b) and (d).
### Determining the Number of Terms in the Given Series:
#### Series (a): [tex]\(5 + 8 + 11 + \ldots + 320\)[/tex]
1. Identify the first term ([tex]\(a_1\)[/tex]) and the common difference ([tex]\(d\)[/tex]):
[tex]\[ a_1 = 5, \quad d = 3 \][/tex]
2. Identify the last term ([tex]\(a_n\)[/tex]):
[tex]\[ a_n = 320 \][/tex]
3. Use the formula for the [tex]\(n\)[/tex]-th term of an arithmetic series:
[tex]\[ a_n = a_1 + (n - 1) \cdot d \][/tex]
Rearrange to solve for [tex]\(n\)[/tex]:
[tex]\[ n = \frac{a_n - a_1}{d} + 1 \][/tex]
4. Substitute the given values:
[tex]\[ n = \frac{320 - 5}{3} + 1 = \frac{315}{3} + 1 = 105 + 1 = 106 \][/tex]
So, the series has 106 terms.
#### Series (c): [tex]\(10 + 13 + 16 + \ldots + 49\)[/tex]
1. Identify the first term ([tex]\(a_1\)[/tex]) and the common difference ([tex]\(d\)[/tex]):
[tex]\[ a_1 = 10, \quad d = 3 \][/tex]
2. Identify the last term ([tex]\(a_n\)[/tex]):
[tex]\[ a_n = 49 \][/tex]
3. Use the formula for the [tex]\(n\)[/tex]-th term of an arithmetic series:
[tex]\[ a_n = a_1 + (n - 1) \cdot d \][/tex]
Rearrange to solve for [tex]\(n\)[/tex]:
[tex]\[ n = \frac{a_n - a_1}{d} + 1 \][/tex]
4. Substitute the given values:
[tex]\[ n = \frac{49 - 10}{3} + 1 = \frac{39}{3} + 1 = 13 + 1 = 14 \][/tex]
So, the series has 14 terms.
#### Series (b) and (d) cannot be solved as they do not provide sufficient information (e.g., the last term of the series is not given).
### Determine the Common Difference and First Term for the Specific Conditions:
#### (a) [tex]\(10^{\text{th}}\)[/tex] Term [tex]\(= 23\)[/tex] and [tex]\(32^{\text{nd}}\)[/tex] Term [tex]\(= 67\)[/tex]:
1. Use the general formula for the [tex]\(n\)[/tex]-th term of an arithmetic series:
[tex]\[ a_n = a_1 + (n - 1) \cdot d \][/tex]
2. Write two equations using the given terms:
[tex]\[ \begin{cases} a_1 + 9d = 23 \quad & \text{(for the 10th term)} \\ a_1 + 31d = 67 \quad & \text{(for the 32nd term)} \end{cases} \][/tex]
3. Subtract the first equation from the second:
[tex]\[ (a_1 + 31d) - (a_1 + 9d) = 67 - 23 \\ 22d = 44 \\ \][/tex]
4. Solve for [tex]\(d\)[/tex]:
[tex]\[ d = \frac{44}{22} = 2 \][/tex]
5. Substitute [tex]\(d\)[/tex] back into one of the original equations to find [tex]\(a_1\)[/tex]:
[tex]\[ a_1 + 9 \cdot d = 23 \\ a_1 + 9 \cdot 2 = 23 \\ a_1 + 18 = 23 \\ a_1 = 23 - 18 \\ a_1 = 5 \][/tex]
Thus, the first term [tex]\(a_1 = 5\)[/tex] and the common difference [tex]\(d = 2\)[/tex].
#### (b) [tex]\(11^{\text{th}}\)[/tex] Term [tex]\(= 5\)[/tex]
The provided information is incomplete and does not allow us to find the first term and the common difference. More information is required to solve this part.
### Summary:
- Series (a) has 106 terms.
- Series (c) has 14 terms.
- The first term and common difference for the series whose [tex]\(10^{\text{th}}\)[/tex] term is 23 and [tex]\(32^{\text{nd}}\)[/tex] term is 67 are 5 and 2, respectively.
- Insufficient information is provided to solve for series (b) and (d).
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.