Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To find the image distance for an object placed in front of a concave mirror, we use the mirror equation:
[tex]\[ d_i = \frac{d_0 f}{d_0 - f} \][/tex]
where:
- [tex]\( d_0 \)[/tex] is the object distance,
- [tex]\( f \)[/tex] is the focal length,
- [tex]\( d_i \)[/tex] is the image distance.
Given values:
- [tex]\( d_0 = 30.0 \, \text{cm} \)[/tex],
- [tex]\( f = 15.0 \, \text{cm} \)[/tex].
Substitute these values into the mirror equation:
[tex]\[ d_i = \frac{30.0 \, \text{cm} \times 15.0 \, \text{cm}}{30.0 \, \text{cm} - 15.0 \, \text{cm}} \][/tex]
Calculate the numerator:
[tex]\[ 30.0 \, \text{cm} \times 15.0 \, \text{cm} = 450.0 \, \text{cm}^2 \][/tex]
Calculate the denominator:
[tex]\[ 30.0 \, \text{cm} - 15.0 \, \text{cm} = 15.0 \, \text{cm} \][/tex]
Now, divide the numerator by the denominator to find the image distance:
[tex]\[ d_i = \frac{450.0 \, \text{cm}^2}{15.0 \, \text{cm}} = 30.0 \, \text{cm} \][/tex]
Therefore, the image distance [tex]\( d_i \)[/tex] is:
[tex]\[ d_i = 30.0 \, \text{cm} \][/tex]
So, the correct answer is:
D. [tex]\( 30.0 \, \text{cm} \)[/tex]
[tex]\[ d_i = \frac{d_0 f}{d_0 - f} \][/tex]
where:
- [tex]\( d_0 \)[/tex] is the object distance,
- [tex]\( f \)[/tex] is the focal length,
- [tex]\( d_i \)[/tex] is the image distance.
Given values:
- [tex]\( d_0 = 30.0 \, \text{cm} \)[/tex],
- [tex]\( f = 15.0 \, \text{cm} \)[/tex].
Substitute these values into the mirror equation:
[tex]\[ d_i = \frac{30.0 \, \text{cm} \times 15.0 \, \text{cm}}{30.0 \, \text{cm} - 15.0 \, \text{cm}} \][/tex]
Calculate the numerator:
[tex]\[ 30.0 \, \text{cm} \times 15.0 \, \text{cm} = 450.0 \, \text{cm}^2 \][/tex]
Calculate the denominator:
[tex]\[ 30.0 \, \text{cm} - 15.0 \, \text{cm} = 15.0 \, \text{cm} \][/tex]
Now, divide the numerator by the denominator to find the image distance:
[tex]\[ d_i = \frac{450.0 \, \text{cm}^2}{15.0 \, \text{cm}} = 30.0 \, \text{cm} \][/tex]
Therefore, the image distance [tex]\( d_i \)[/tex] is:
[tex]\[ d_i = 30.0 \, \text{cm} \][/tex]
So, the correct answer is:
D. [tex]\( 30.0 \, \text{cm} \)[/tex]
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.