Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Ask your questions and receive precise answers from experienced professionals across different disciplines. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Sure, let's solve the problem step by step.
### Part (a)
Given that [tex]\( X \)[/tex] is uniformly distributed over the interval [tex]\([-1, 1]\)[/tex], we need to determine the mean, variance, and standard deviation.
#### Mean
The mean of a continuous uniform distribution over the interval [tex]\([a, b]\)[/tex] is given by:
[tex]\[ \text{Mean} = \frac{a + b}{2} \][/tex]
For our specific case, [tex]\( a = -1 \)[/tex] and [tex]\( b = 1 \)[/tex], so:
[tex]\[ \text{Mean} = \frac{-1 + 1}{2} = \frac{0}{2} = 0.0 \][/tex]
#### Variance
The variance of a continuous uniform distribution over the interval [tex]\([a, b]\)[/tex] is given by:
[tex]\[ \text{Variance} = \frac{(b - a)^2}{12} \][/tex]
For [tex]\( a = -1 \)[/tex] and [tex]\( b = 1 \)[/tex]:
[tex]\[ \text{Variance} = \frac{(1 - (-1))^2}{12} = \frac{(1 + 1)^2}{12} = \frac{2^2}{12} = \frac{4}{12} = \frac{1}{3} = 0.333 \][/tex]
#### Standard Deviation
The standard deviation is the square root of the variance:
[tex]\[ \text{Standard Deviation} = \sqrt{\text{Variance}} = \sqrt{0.333} \approx 0.577 \][/tex]
So, for part (a):
Mean [tex]\( = 0.0 \)[/tex]
Variance [tex]\( = 0.333 \)[/tex]
Standard Deviation [tex]\( = 0.577 \)[/tex]
### Part (b)
We need to find the value for [tex]\( x \)[/tex] such that [tex]\( P(-x < X < x) = 0.90 \)[/tex].
For a continuous uniform distribution over the interval [tex]\([-1, 1]\)[/tex], the cumulative distribution function (CDF) is:
[tex]\[ F(c) = \frac{c - a}{b - a} \][/tex]
We need to find [tex]\( x \)[/tex] such that:
[tex]\[ P(-x < X < x) = 0.90 \][/tex]
Since the distribution is symmetric around zero, we have:
[tex]\[ P(-x < X < x) = F(x) - F(-x) \][/tex]
Using the properties of the CDF for a symmetric uniform distribution:
[tex]\[ F(x) = 0.95 \][/tex]
So the value of [tex]\( x \)[/tex] that satisfies this condition is:
[tex]\[ x = -1 + 0.95 \cdot (1 - (-1)) = -1 + 0.95 \cdot 2 = -1 + 1.9 = 0.9 \][/tex]
Therefore:
The value of [tex]\( x \)[/tex] such that [tex]\( P(-x < X < x) = 0.90 \)[/tex] is [tex]\( x = 0.9 \)[/tex].
So for part (b), [tex]\( x = 0.9 \)[/tex].
### Part (a)
Given that [tex]\( X \)[/tex] is uniformly distributed over the interval [tex]\([-1, 1]\)[/tex], we need to determine the mean, variance, and standard deviation.
#### Mean
The mean of a continuous uniform distribution over the interval [tex]\([a, b]\)[/tex] is given by:
[tex]\[ \text{Mean} = \frac{a + b}{2} \][/tex]
For our specific case, [tex]\( a = -1 \)[/tex] and [tex]\( b = 1 \)[/tex], so:
[tex]\[ \text{Mean} = \frac{-1 + 1}{2} = \frac{0}{2} = 0.0 \][/tex]
#### Variance
The variance of a continuous uniform distribution over the interval [tex]\([a, b]\)[/tex] is given by:
[tex]\[ \text{Variance} = \frac{(b - a)^2}{12} \][/tex]
For [tex]\( a = -1 \)[/tex] and [tex]\( b = 1 \)[/tex]:
[tex]\[ \text{Variance} = \frac{(1 - (-1))^2}{12} = \frac{(1 + 1)^2}{12} = \frac{2^2}{12} = \frac{4}{12} = \frac{1}{3} = 0.333 \][/tex]
#### Standard Deviation
The standard deviation is the square root of the variance:
[tex]\[ \text{Standard Deviation} = \sqrt{\text{Variance}} = \sqrt{0.333} \approx 0.577 \][/tex]
So, for part (a):
Mean [tex]\( = 0.0 \)[/tex]
Variance [tex]\( = 0.333 \)[/tex]
Standard Deviation [tex]\( = 0.577 \)[/tex]
### Part (b)
We need to find the value for [tex]\( x \)[/tex] such that [tex]\( P(-x < X < x) = 0.90 \)[/tex].
For a continuous uniform distribution over the interval [tex]\([-1, 1]\)[/tex], the cumulative distribution function (CDF) is:
[tex]\[ F(c) = \frac{c - a}{b - a} \][/tex]
We need to find [tex]\( x \)[/tex] such that:
[tex]\[ P(-x < X < x) = 0.90 \][/tex]
Since the distribution is symmetric around zero, we have:
[tex]\[ P(-x < X < x) = F(x) - F(-x) \][/tex]
Using the properties of the CDF for a symmetric uniform distribution:
[tex]\[ F(x) = 0.95 \][/tex]
So the value of [tex]\( x \)[/tex] that satisfies this condition is:
[tex]\[ x = -1 + 0.95 \cdot (1 - (-1)) = -1 + 0.95 \cdot 2 = -1 + 1.9 = 0.9 \][/tex]
Therefore:
The value of [tex]\( x \)[/tex] such that [tex]\( P(-x < X < x) = 0.90 \)[/tex] is [tex]\( x = 0.9 \)[/tex].
So for part (b), [tex]\( x = 0.9 \)[/tex].
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.