Discover the best answers at Westonci.ca, where experts share their insights and knowledge with you. Get accurate and detailed answers to your questions from a dedicated community of experts on our Q&A platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
Sure, let's solve the problem step by step.
### Part (a)
Given that [tex]\( X \)[/tex] is uniformly distributed over the interval [tex]\([-1, 1]\)[/tex], we need to determine the mean, variance, and standard deviation.
#### Mean
The mean of a continuous uniform distribution over the interval [tex]\([a, b]\)[/tex] is given by:
[tex]\[ \text{Mean} = \frac{a + b}{2} \][/tex]
For our specific case, [tex]\( a = -1 \)[/tex] and [tex]\( b = 1 \)[/tex], so:
[tex]\[ \text{Mean} = \frac{-1 + 1}{2} = \frac{0}{2} = 0.0 \][/tex]
#### Variance
The variance of a continuous uniform distribution over the interval [tex]\([a, b]\)[/tex] is given by:
[tex]\[ \text{Variance} = \frac{(b - a)^2}{12} \][/tex]
For [tex]\( a = -1 \)[/tex] and [tex]\( b = 1 \)[/tex]:
[tex]\[ \text{Variance} = \frac{(1 - (-1))^2}{12} = \frac{(1 + 1)^2}{12} = \frac{2^2}{12} = \frac{4}{12} = \frac{1}{3} = 0.333 \][/tex]
#### Standard Deviation
The standard deviation is the square root of the variance:
[tex]\[ \text{Standard Deviation} = \sqrt{\text{Variance}} = \sqrt{0.333} \approx 0.577 \][/tex]
So, for part (a):
Mean [tex]\( = 0.0 \)[/tex]
Variance [tex]\( = 0.333 \)[/tex]
Standard Deviation [tex]\( = 0.577 \)[/tex]
### Part (b)
We need to find the value for [tex]\( x \)[/tex] such that [tex]\( P(-x < X < x) = 0.90 \)[/tex].
For a continuous uniform distribution over the interval [tex]\([-1, 1]\)[/tex], the cumulative distribution function (CDF) is:
[tex]\[ F(c) = \frac{c - a}{b - a} \][/tex]
We need to find [tex]\( x \)[/tex] such that:
[tex]\[ P(-x < X < x) = 0.90 \][/tex]
Since the distribution is symmetric around zero, we have:
[tex]\[ P(-x < X < x) = F(x) - F(-x) \][/tex]
Using the properties of the CDF for a symmetric uniform distribution:
[tex]\[ F(x) = 0.95 \][/tex]
So the value of [tex]\( x \)[/tex] that satisfies this condition is:
[tex]\[ x = -1 + 0.95 \cdot (1 - (-1)) = -1 + 0.95 \cdot 2 = -1 + 1.9 = 0.9 \][/tex]
Therefore:
The value of [tex]\( x \)[/tex] such that [tex]\( P(-x < X < x) = 0.90 \)[/tex] is [tex]\( x = 0.9 \)[/tex].
So for part (b), [tex]\( x = 0.9 \)[/tex].
### Part (a)
Given that [tex]\( X \)[/tex] is uniformly distributed over the interval [tex]\([-1, 1]\)[/tex], we need to determine the mean, variance, and standard deviation.
#### Mean
The mean of a continuous uniform distribution over the interval [tex]\([a, b]\)[/tex] is given by:
[tex]\[ \text{Mean} = \frac{a + b}{2} \][/tex]
For our specific case, [tex]\( a = -1 \)[/tex] and [tex]\( b = 1 \)[/tex], so:
[tex]\[ \text{Mean} = \frac{-1 + 1}{2} = \frac{0}{2} = 0.0 \][/tex]
#### Variance
The variance of a continuous uniform distribution over the interval [tex]\([a, b]\)[/tex] is given by:
[tex]\[ \text{Variance} = \frac{(b - a)^2}{12} \][/tex]
For [tex]\( a = -1 \)[/tex] and [tex]\( b = 1 \)[/tex]:
[tex]\[ \text{Variance} = \frac{(1 - (-1))^2}{12} = \frac{(1 + 1)^2}{12} = \frac{2^2}{12} = \frac{4}{12} = \frac{1}{3} = 0.333 \][/tex]
#### Standard Deviation
The standard deviation is the square root of the variance:
[tex]\[ \text{Standard Deviation} = \sqrt{\text{Variance}} = \sqrt{0.333} \approx 0.577 \][/tex]
So, for part (a):
Mean [tex]\( = 0.0 \)[/tex]
Variance [tex]\( = 0.333 \)[/tex]
Standard Deviation [tex]\( = 0.577 \)[/tex]
### Part (b)
We need to find the value for [tex]\( x \)[/tex] such that [tex]\( P(-x < X < x) = 0.90 \)[/tex].
For a continuous uniform distribution over the interval [tex]\([-1, 1]\)[/tex], the cumulative distribution function (CDF) is:
[tex]\[ F(c) = \frac{c - a}{b - a} \][/tex]
We need to find [tex]\( x \)[/tex] such that:
[tex]\[ P(-x < X < x) = 0.90 \][/tex]
Since the distribution is symmetric around zero, we have:
[tex]\[ P(-x < X < x) = F(x) - F(-x) \][/tex]
Using the properties of the CDF for a symmetric uniform distribution:
[tex]\[ F(x) = 0.95 \][/tex]
So the value of [tex]\( x \)[/tex] that satisfies this condition is:
[tex]\[ x = -1 + 0.95 \cdot (1 - (-1)) = -1 + 0.95 \cdot 2 = -1 + 1.9 = 0.9 \][/tex]
Therefore:
The value of [tex]\( x \)[/tex] such that [tex]\( P(-x < X < x) = 0.90 \)[/tex] is [tex]\( x = 0.9 \)[/tex].
So for part (b), [tex]\( x = 0.9 \)[/tex].
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.