Looking for trustworthy answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Get immediate and reliable solutions to your questions from a community of experienced experts on our Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
Sure, let's solve the problem step by step.
### Part (a)
Given that [tex]\( X \)[/tex] is uniformly distributed over the interval [tex]\([-1, 1]\)[/tex], we need to determine the mean, variance, and standard deviation.
#### Mean
The mean of a continuous uniform distribution over the interval [tex]\([a, b]\)[/tex] is given by:
[tex]\[ \text{Mean} = \frac{a + b}{2} \][/tex]
For our specific case, [tex]\( a = -1 \)[/tex] and [tex]\( b = 1 \)[/tex], so:
[tex]\[ \text{Mean} = \frac{-1 + 1}{2} = \frac{0}{2} = 0.0 \][/tex]
#### Variance
The variance of a continuous uniform distribution over the interval [tex]\([a, b]\)[/tex] is given by:
[tex]\[ \text{Variance} = \frac{(b - a)^2}{12} \][/tex]
For [tex]\( a = -1 \)[/tex] and [tex]\( b = 1 \)[/tex]:
[tex]\[ \text{Variance} = \frac{(1 - (-1))^2}{12} = \frac{(1 + 1)^2}{12} = \frac{2^2}{12} = \frac{4}{12} = \frac{1}{3} = 0.333 \][/tex]
#### Standard Deviation
The standard deviation is the square root of the variance:
[tex]\[ \text{Standard Deviation} = \sqrt{\text{Variance}} = \sqrt{0.333} \approx 0.577 \][/tex]
So, for part (a):
Mean [tex]\( = 0.0 \)[/tex]
Variance [tex]\( = 0.333 \)[/tex]
Standard Deviation [tex]\( = 0.577 \)[/tex]
### Part (b)
We need to find the value for [tex]\( x \)[/tex] such that [tex]\( P(-x < X < x) = 0.90 \)[/tex].
For a continuous uniform distribution over the interval [tex]\([-1, 1]\)[/tex], the cumulative distribution function (CDF) is:
[tex]\[ F(c) = \frac{c - a}{b - a} \][/tex]
We need to find [tex]\( x \)[/tex] such that:
[tex]\[ P(-x < X < x) = 0.90 \][/tex]
Since the distribution is symmetric around zero, we have:
[tex]\[ P(-x < X < x) = F(x) - F(-x) \][/tex]
Using the properties of the CDF for a symmetric uniform distribution:
[tex]\[ F(x) = 0.95 \][/tex]
So the value of [tex]\( x \)[/tex] that satisfies this condition is:
[tex]\[ x = -1 + 0.95 \cdot (1 - (-1)) = -1 + 0.95 \cdot 2 = -1 + 1.9 = 0.9 \][/tex]
Therefore:
The value of [tex]\( x \)[/tex] such that [tex]\( P(-x < X < x) = 0.90 \)[/tex] is [tex]\( x = 0.9 \)[/tex].
So for part (b), [tex]\( x = 0.9 \)[/tex].
### Part (a)
Given that [tex]\( X \)[/tex] is uniformly distributed over the interval [tex]\([-1, 1]\)[/tex], we need to determine the mean, variance, and standard deviation.
#### Mean
The mean of a continuous uniform distribution over the interval [tex]\([a, b]\)[/tex] is given by:
[tex]\[ \text{Mean} = \frac{a + b}{2} \][/tex]
For our specific case, [tex]\( a = -1 \)[/tex] and [tex]\( b = 1 \)[/tex], so:
[tex]\[ \text{Mean} = \frac{-1 + 1}{2} = \frac{0}{2} = 0.0 \][/tex]
#### Variance
The variance of a continuous uniform distribution over the interval [tex]\([a, b]\)[/tex] is given by:
[tex]\[ \text{Variance} = \frac{(b - a)^2}{12} \][/tex]
For [tex]\( a = -1 \)[/tex] and [tex]\( b = 1 \)[/tex]:
[tex]\[ \text{Variance} = \frac{(1 - (-1))^2}{12} = \frac{(1 + 1)^2}{12} = \frac{2^2}{12} = \frac{4}{12} = \frac{1}{3} = 0.333 \][/tex]
#### Standard Deviation
The standard deviation is the square root of the variance:
[tex]\[ \text{Standard Deviation} = \sqrt{\text{Variance}} = \sqrt{0.333} \approx 0.577 \][/tex]
So, for part (a):
Mean [tex]\( = 0.0 \)[/tex]
Variance [tex]\( = 0.333 \)[/tex]
Standard Deviation [tex]\( = 0.577 \)[/tex]
### Part (b)
We need to find the value for [tex]\( x \)[/tex] such that [tex]\( P(-x < X < x) = 0.90 \)[/tex].
For a continuous uniform distribution over the interval [tex]\([-1, 1]\)[/tex], the cumulative distribution function (CDF) is:
[tex]\[ F(c) = \frac{c - a}{b - a} \][/tex]
We need to find [tex]\( x \)[/tex] such that:
[tex]\[ P(-x < X < x) = 0.90 \][/tex]
Since the distribution is symmetric around zero, we have:
[tex]\[ P(-x < X < x) = F(x) - F(-x) \][/tex]
Using the properties of the CDF for a symmetric uniform distribution:
[tex]\[ F(x) = 0.95 \][/tex]
So the value of [tex]\( x \)[/tex] that satisfies this condition is:
[tex]\[ x = -1 + 0.95 \cdot (1 - (-1)) = -1 + 0.95 \cdot 2 = -1 + 1.9 = 0.9 \][/tex]
Therefore:
The value of [tex]\( x \)[/tex] such that [tex]\( P(-x < X < x) = 0.90 \)[/tex] is [tex]\( x = 0.9 \)[/tex].
So for part (b), [tex]\( x = 0.9 \)[/tex].
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.