Westonci.ca is your go-to source for answers, with a community ready to provide accurate and timely information. Explore thousands of questions and answers from knowledgeable experts in various fields on our Q&A platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To determine how Reaction 3 should be manipulated to match the overall reaction using Hess's Law, let's consider the goal reaction and the given thermochemical equations:
### Goal Reaction:
[tex]\[ C_2H_5OH + 3 O_2 \rightarrow 2 CO_2 + 3 H_2O \][/tex]
### Given Reactions:
1. [tex]\( \text{C} + \text{O}_2 \rightarrow \text{CO}_2, \Delta H = -394 \text{kJ} \)[/tex]
2. [tex]\( \text{H}_2 + \frac{1}{2} \text{O}_2 \rightarrow \text{H}_2\text{O}, \Delta H = -286 \text{kJ} \)[/tex]
3. [tex]\( 2 \text{C} + 3 \text{H}_2 + \frac{1}{2} \text{O}_2 \rightarrow \text{C}_2\text{H}_5\text{OH}, \Delta H = -278 \text{kJ} \)[/tex]
### Strategy:
To use these reactions to achieve the goal reaction, we need to manipulate Reaction 3 to get ethanol (C[tex]\(_2\)[/tex]H[tex]\(_5\)[/tex]OH) on the reactant side.
1. Initial Form of Reaction 3:
[tex]\( 2 \text{C} + 3 \text{H}_2 + \frac{1}{2} \text{O}_2 \rightarrow \text{C}_2\text{H}_5\text{OH}, \Delta H = -278 \text{kJ} \)[/tex]
2. Required Manipulation:
Since the goal reaction has ethanol on the reactant side, we need to reverse Reaction 3. Reversing the reaction will also reverse the sign of the enthalpy change.
3. Reversed Reaction 3:
[tex]\( \text{C}_2\text{H}_5\text{OH} \rightarrow 2 \text{C} + 3 \text{H}_2 + \frac{1}{2} \text{O}_2, \Delta H = +278 \text{kJ} \)[/tex]
4. Balancing with Goal Reaction:
The reversed Reaction 3 now matches the ethanol component of the goal reaction. We don't need to scale it, as the coefficients already fit the goal reaction.
In conclusion, Reaction 3 should be reversed to match the overall reaction:
[tex]\[ \boxed{\text{It is reversed.}} \][/tex]
Thus, the correct manipulation of Reaction 3 is to reverse it.
### Goal Reaction:
[tex]\[ C_2H_5OH + 3 O_2 \rightarrow 2 CO_2 + 3 H_2O \][/tex]
### Given Reactions:
1. [tex]\( \text{C} + \text{O}_2 \rightarrow \text{CO}_2, \Delta H = -394 \text{kJ} \)[/tex]
2. [tex]\( \text{H}_2 + \frac{1}{2} \text{O}_2 \rightarrow \text{H}_2\text{O}, \Delta H = -286 \text{kJ} \)[/tex]
3. [tex]\( 2 \text{C} + 3 \text{H}_2 + \frac{1}{2} \text{O}_2 \rightarrow \text{C}_2\text{H}_5\text{OH}, \Delta H = -278 \text{kJ} \)[/tex]
### Strategy:
To use these reactions to achieve the goal reaction, we need to manipulate Reaction 3 to get ethanol (C[tex]\(_2\)[/tex]H[tex]\(_5\)[/tex]OH) on the reactant side.
1. Initial Form of Reaction 3:
[tex]\( 2 \text{C} + 3 \text{H}_2 + \frac{1}{2} \text{O}_2 \rightarrow \text{C}_2\text{H}_5\text{OH}, \Delta H = -278 \text{kJ} \)[/tex]
2. Required Manipulation:
Since the goal reaction has ethanol on the reactant side, we need to reverse Reaction 3. Reversing the reaction will also reverse the sign of the enthalpy change.
3. Reversed Reaction 3:
[tex]\( \text{C}_2\text{H}_5\text{OH} \rightarrow 2 \text{C} + 3 \text{H}_2 + \frac{1}{2} \text{O}_2, \Delta H = +278 \text{kJ} \)[/tex]
4. Balancing with Goal Reaction:
The reversed Reaction 3 now matches the ethanol component of the goal reaction. We don't need to scale it, as the coefficients already fit the goal reaction.
In conclusion, Reaction 3 should be reversed to match the overall reaction:
[tex]\[ \boxed{\text{It is reversed.}} \][/tex]
Thus, the correct manipulation of Reaction 3 is to reverse it.
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.