Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Get quick and reliable solutions to your questions from a community of experienced professionals on our platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To solve the given problem using Hess's Law, we need to use the provided thermochemical equations to find the standard reaction enthalpy, [tex]\(\Delta H\)[/tex], for the target reaction:
[tex]\[ C_2H_5OH + 3 O_2 \rightarrow 2 CO_2 + 3 H_2O \][/tex]
Given thermochemical equations:
1. [tex]\( C + O_2 \rightarrow CO_2, \Delta H = -394 \, \text{kJ} \)[/tex]
2. [tex]\( H_2 + \frac{1}{2} O_2 \rightarrow H_2O, \Delta H = -286 \, \text{kJ} \)[/tex]
3. [tex]\( C_2H_5OH \rightarrow 2 C + 3 H_2 + \frac{1}{2} O_2, \Delta H = +278 \, \text{kJ} \)[/tex]
We manipulate these equations to match the target reaction:
### Step-by-Step Solution:
1. Reverse Equation 3:
[tex]\[ C_2H_5OH \rightarrow 2 C + 3 H_2 + \frac{1}{2} O_2, \Delta H = +278 \, \text{kJ} \][/tex]
When reversed:
[tex]\[ 2 C + 3 H_2 + \frac{1}{2} O_2 \rightarrow C_2H_5OH, \Delta H = -278 \, \text{kJ} \][/tex]
2. Double Equation 1:
[tex]\[ C + O_2 \rightarrow CO_2, \Delta H = -394 \, \text{kJ} \][/tex]
When doubled:
[tex]\[ 2 C + 2 O_2 \rightarrow 2 CO_2, \Delta H = 2 \times -394 \, \text{kJ} = -788 \, \text{kJ} \][/tex]
3. Triple Equation 2:
[tex]\[ H_2 + \frac{1}{2} O_2 \rightarrow H_2O, \Delta H = -286 \, \text{kJ} \][/tex]
When tripled:
[tex]\[ 3 H_2 + \frac{3}{2} O_2 \rightarrow 3 H_2O, \Delta H = 3 \times -286 \, \text{kJ} = -858 \, \text{kJ} \][/tex]
4. Combine the manipulated equations:
Reversed Equation 3:
[tex]\[ 2 C + 3 H_2 + \frac{1}{2} O_2 \rightarrow C_2H_5OH, \Delta H = -278 \, \text{kJ} \][/tex]
Doubled Equation 1:
[tex]\[ 2 C + 2 O_2 \rightarrow 2 CO_2, \Delta H = -788 \, \text{kJ} \][/tex]
Tripled Equation 2:
[tex]\[ 3 H_2 + \frac{3}{2} O_2 \rightarrow 3 H_2O, \Delta H = -858 \, \text{kJ} \][/tex]
Adding these reactions gives the overall reaction:
[tex]\[ C_2H_5OH + 3 O_2 \rightarrow 2 CO_2 + 3 H_2O \][/tex]
The enthalpy changes sum up as follows:
[tex]\[ \Delta H_{total} = \Delta H_3^{reversed} + \Delta H_1^{doubled} + \Delta H_2^{tripled} \][/tex]
[tex]\[ \Delta H_{total} = -278 \, \text{kJ} + (-788 \, \text{kJ}) + (-858 \, \text{kJ}) \][/tex]
[tex]\[ \Delta H_{total} = -1924 \, \text{kJ} \][/tex]
### Additional Question: How is Reaction 2 manipulated?
Examining the manipulation, Reaction 2 is used as:
[tex]\[ H_2 + \frac{1}{2} O_2 \rightarrow H_2O, \Delta H = -286 \, \text{kJ} \][/tex]
We triple it (to get 3 times the enthalpy change and reactants/products).
Therefore, Reaction 2 is tripled.
[tex]\[ C_2H_5OH + 3 O_2 \rightarrow 2 CO_2 + 3 H_2O \][/tex]
Given thermochemical equations:
1. [tex]\( C + O_2 \rightarrow CO_2, \Delta H = -394 \, \text{kJ} \)[/tex]
2. [tex]\( H_2 + \frac{1}{2} O_2 \rightarrow H_2O, \Delta H = -286 \, \text{kJ} \)[/tex]
3. [tex]\( C_2H_5OH \rightarrow 2 C + 3 H_2 + \frac{1}{2} O_2, \Delta H = +278 \, \text{kJ} \)[/tex]
We manipulate these equations to match the target reaction:
### Step-by-Step Solution:
1. Reverse Equation 3:
[tex]\[ C_2H_5OH \rightarrow 2 C + 3 H_2 + \frac{1}{2} O_2, \Delta H = +278 \, \text{kJ} \][/tex]
When reversed:
[tex]\[ 2 C + 3 H_2 + \frac{1}{2} O_2 \rightarrow C_2H_5OH, \Delta H = -278 \, \text{kJ} \][/tex]
2. Double Equation 1:
[tex]\[ C + O_2 \rightarrow CO_2, \Delta H = -394 \, \text{kJ} \][/tex]
When doubled:
[tex]\[ 2 C + 2 O_2 \rightarrow 2 CO_2, \Delta H = 2 \times -394 \, \text{kJ} = -788 \, \text{kJ} \][/tex]
3. Triple Equation 2:
[tex]\[ H_2 + \frac{1}{2} O_2 \rightarrow H_2O, \Delta H = -286 \, \text{kJ} \][/tex]
When tripled:
[tex]\[ 3 H_2 + \frac{3}{2} O_2 \rightarrow 3 H_2O, \Delta H = 3 \times -286 \, \text{kJ} = -858 \, \text{kJ} \][/tex]
4. Combine the manipulated equations:
Reversed Equation 3:
[tex]\[ 2 C + 3 H_2 + \frac{1}{2} O_2 \rightarrow C_2H_5OH, \Delta H = -278 \, \text{kJ} \][/tex]
Doubled Equation 1:
[tex]\[ 2 C + 2 O_2 \rightarrow 2 CO_2, \Delta H = -788 \, \text{kJ} \][/tex]
Tripled Equation 2:
[tex]\[ 3 H_2 + \frac{3}{2} O_2 \rightarrow 3 H_2O, \Delta H = -858 \, \text{kJ} \][/tex]
Adding these reactions gives the overall reaction:
[tex]\[ C_2H_5OH + 3 O_2 \rightarrow 2 CO_2 + 3 H_2O \][/tex]
The enthalpy changes sum up as follows:
[tex]\[ \Delta H_{total} = \Delta H_3^{reversed} + \Delta H_1^{doubled} + \Delta H_2^{tripled} \][/tex]
[tex]\[ \Delta H_{total} = -278 \, \text{kJ} + (-788 \, \text{kJ}) + (-858 \, \text{kJ}) \][/tex]
[tex]\[ \Delta H_{total} = -1924 \, \text{kJ} \][/tex]
### Additional Question: How is Reaction 2 manipulated?
Examining the manipulation, Reaction 2 is used as:
[tex]\[ H_2 + \frac{1}{2} O_2 \rightarrow H_2O, \Delta H = -286 \, \text{kJ} \][/tex]
We triple it (to get 3 times the enthalpy change and reactants/products).
Therefore, Reaction 2 is tripled.
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.