Explore Westonci.ca, the leading Q&A site where experts provide accurate and helpful answers to all your questions. Join our platform to get reliable answers to your questions from a knowledgeable community of experts. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To determine how Reaction 1 is manipulated to match the overall reaction using Hess's Law, let's go through each given reaction and see how they contribute to forming the desired reaction:
1. [tex]\( C + O_2 \rightarrow CO_2, \Delta H = -394 \, \text{kJ} \)[/tex]
2. [tex]\( 3 H_2 + \frac{3}{2} O_2 \rightarrow 3 H_2O, \Delta H = -858 \, \text{kJ} \)[/tex]
3. [tex]\( C_2H_5OH \rightarrow 2 C + 3 H_2 + \frac{1}{2} O_2, \Delta H = +278 \, \text{kJ} \)[/tex]
The goal is to find the enthalpy change ([tex]\(\Delta H^{\circ}\)[/tex]) for the reaction:
[tex]\[ C_2H_5OH + 3 O_2 \rightarrow 2 CO_2 + 3 H_2O \][/tex]
First, consider the desired products and reactants in the goal reaction:
- We need 2 moles of [tex]\(CO_2\)[/tex].
- We need 3 moles of [tex]\(H_2O\)[/tex].
- We start with [tex]\(C_2H_5OH\)[/tex] and [tex]\(O_2\)[/tex].
To achieve this, let's rearrange the given reactions:
Step-by-step breakdown:
1. Start with Reaction 3, which involves [tex]\(C_2H_5OH\)[/tex]:
[tex]\[ C_2H_5OH \rightarrow 2 C + 3 H_2 + \frac{1}{2} O_2, \Delta H = +278 \, \text{kJ} \][/tex]
- This reaction must be reversed to match the [tex]\(C_2H_5OH\)[/tex] on the reactant side:
[tex]\[ 2 C + 3 H_2 + \frac{1}{2} O_2 \rightarrow C_2H_5OH, \Delta H = -278 \, \text{kJ} \][/tex]
2. Use Reaction 1 to form [tex]\(CO_2\)[/tex]:
[tex]\[ C + O_2 \rightarrow CO_2, \Delta H = -394 \, \text{kJ} \][/tex]
- We need 2 moles of [tex]\(CO_2\)[/tex], so Reaction 1 is used twice:
[tex]\[ 2(C + O_2 \rightarrow CO_2) \Rightarrow 2 C + 2 O_2 \rightarrow 2 CO_2, \Delta H = 2 \times -394 = -788 \, \text{kJ} \][/tex]
3. Use Reaction 2 to form [tex]\(H_2O\)[/tex]:
[tex]\[ 3 H_2 + \frac{3}{2} O_2 \rightarrow 3 H_2O, \Delta H = -858 \, \text{kJ} \][/tex]
Combine all the manipulated reactions:
1. [tex]\( 2 C + 3 H_2 + \frac{1}{2} O_2 \rightarrow C_2H_5OH, \Delta H = -278 \, \text{kJ} \)[/tex] (reversed Reaction 3)
2. [tex]\( 2 C + 2 O_2 \rightarrow 2 CO_2, \Delta H = -788 \, \text{kJ} \)[/tex] (twice Reaction 1)
3. [tex]\( 3 H_2 + \frac{3}{2} O_2 \rightarrow 3 H_2O, \Delta H = -858 \, \text{kJ} \)[/tex]
Note that these combinations produce:
[tex]\[ C_2H_5OH + 3 O_2 \rightarrow 2 CO_2 + 3 H_2O \][/tex]
Thus, Reaction 1 is used as is without any change to match the overall reaction. Therefore, the correct manipulation of Reaction 1 is:
- It remains the same.
1. [tex]\( C + O_2 \rightarrow CO_2, \Delta H = -394 \, \text{kJ} \)[/tex]
2. [tex]\( 3 H_2 + \frac{3}{2} O_2 \rightarrow 3 H_2O, \Delta H = -858 \, \text{kJ} \)[/tex]
3. [tex]\( C_2H_5OH \rightarrow 2 C + 3 H_2 + \frac{1}{2} O_2, \Delta H = +278 \, \text{kJ} \)[/tex]
The goal is to find the enthalpy change ([tex]\(\Delta H^{\circ}\)[/tex]) for the reaction:
[tex]\[ C_2H_5OH + 3 O_2 \rightarrow 2 CO_2 + 3 H_2O \][/tex]
First, consider the desired products and reactants in the goal reaction:
- We need 2 moles of [tex]\(CO_2\)[/tex].
- We need 3 moles of [tex]\(H_2O\)[/tex].
- We start with [tex]\(C_2H_5OH\)[/tex] and [tex]\(O_2\)[/tex].
To achieve this, let's rearrange the given reactions:
Step-by-step breakdown:
1. Start with Reaction 3, which involves [tex]\(C_2H_5OH\)[/tex]:
[tex]\[ C_2H_5OH \rightarrow 2 C + 3 H_2 + \frac{1}{2} O_2, \Delta H = +278 \, \text{kJ} \][/tex]
- This reaction must be reversed to match the [tex]\(C_2H_5OH\)[/tex] on the reactant side:
[tex]\[ 2 C + 3 H_2 + \frac{1}{2} O_2 \rightarrow C_2H_5OH, \Delta H = -278 \, \text{kJ} \][/tex]
2. Use Reaction 1 to form [tex]\(CO_2\)[/tex]:
[tex]\[ C + O_2 \rightarrow CO_2, \Delta H = -394 \, \text{kJ} \][/tex]
- We need 2 moles of [tex]\(CO_2\)[/tex], so Reaction 1 is used twice:
[tex]\[ 2(C + O_2 \rightarrow CO_2) \Rightarrow 2 C + 2 O_2 \rightarrow 2 CO_2, \Delta H = 2 \times -394 = -788 \, \text{kJ} \][/tex]
3. Use Reaction 2 to form [tex]\(H_2O\)[/tex]:
[tex]\[ 3 H_2 + \frac{3}{2} O_2 \rightarrow 3 H_2O, \Delta H = -858 \, \text{kJ} \][/tex]
Combine all the manipulated reactions:
1. [tex]\( 2 C + 3 H_2 + \frac{1}{2} O_2 \rightarrow C_2H_5OH, \Delta H = -278 \, \text{kJ} \)[/tex] (reversed Reaction 3)
2. [tex]\( 2 C + 2 O_2 \rightarrow 2 CO_2, \Delta H = -788 \, \text{kJ} \)[/tex] (twice Reaction 1)
3. [tex]\( 3 H_2 + \frac{3}{2} O_2 \rightarrow 3 H_2O, \Delta H = -858 \, \text{kJ} \)[/tex]
Note that these combinations produce:
[tex]\[ C_2H_5OH + 3 O_2 \rightarrow 2 CO_2 + 3 H_2O \][/tex]
Thus, Reaction 1 is used as is without any change to match the overall reaction. Therefore, the correct manipulation of Reaction 1 is:
- It remains the same.
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.