At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To determine how Reaction 1 is manipulated to match the overall reaction using Hess's Law, let's go through each given reaction and see how they contribute to forming the desired reaction:
1. [tex]\( C + O_2 \rightarrow CO_2, \Delta H = -394 \, \text{kJ} \)[/tex]
2. [tex]\( 3 H_2 + \frac{3}{2} O_2 \rightarrow 3 H_2O, \Delta H = -858 \, \text{kJ} \)[/tex]
3. [tex]\( C_2H_5OH \rightarrow 2 C + 3 H_2 + \frac{1}{2} O_2, \Delta H = +278 \, \text{kJ} \)[/tex]
The goal is to find the enthalpy change ([tex]\(\Delta H^{\circ}\)[/tex]) for the reaction:
[tex]\[ C_2H_5OH + 3 O_2 \rightarrow 2 CO_2 + 3 H_2O \][/tex]
First, consider the desired products and reactants in the goal reaction:
- We need 2 moles of [tex]\(CO_2\)[/tex].
- We need 3 moles of [tex]\(H_2O\)[/tex].
- We start with [tex]\(C_2H_5OH\)[/tex] and [tex]\(O_2\)[/tex].
To achieve this, let's rearrange the given reactions:
Step-by-step breakdown:
1. Start with Reaction 3, which involves [tex]\(C_2H_5OH\)[/tex]:
[tex]\[ C_2H_5OH \rightarrow 2 C + 3 H_2 + \frac{1}{2} O_2, \Delta H = +278 \, \text{kJ} \][/tex]
- This reaction must be reversed to match the [tex]\(C_2H_5OH\)[/tex] on the reactant side:
[tex]\[ 2 C + 3 H_2 + \frac{1}{2} O_2 \rightarrow C_2H_5OH, \Delta H = -278 \, \text{kJ} \][/tex]
2. Use Reaction 1 to form [tex]\(CO_2\)[/tex]:
[tex]\[ C + O_2 \rightarrow CO_2, \Delta H = -394 \, \text{kJ} \][/tex]
- We need 2 moles of [tex]\(CO_2\)[/tex], so Reaction 1 is used twice:
[tex]\[ 2(C + O_2 \rightarrow CO_2) \Rightarrow 2 C + 2 O_2 \rightarrow 2 CO_2, \Delta H = 2 \times -394 = -788 \, \text{kJ} \][/tex]
3. Use Reaction 2 to form [tex]\(H_2O\)[/tex]:
[tex]\[ 3 H_2 + \frac{3}{2} O_2 \rightarrow 3 H_2O, \Delta H = -858 \, \text{kJ} \][/tex]
Combine all the manipulated reactions:
1. [tex]\( 2 C + 3 H_2 + \frac{1}{2} O_2 \rightarrow C_2H_5OH, \Delta H = -278 \, \text{kJ} \)[/tex] (reversed Reaction 3)
2. [tex]\( 2 C + 2 O_2 \rightarrow 2 CO_2, \Delta H = -788 \, \text{kJ} \)[/tex] (twice Reaction 1)
3. [tex]\( 3 H_2 + \frac{3}{2} O_2 \rightarrow 3 H_2O, \Delta H = -858 \, \text{kJ} \)[/tex]
Note that these combinations produce:
[tex]\[ C_2H_5OH + 3 O_2 \rightarrow 2 CO_2 + 3 H_2O \][/tex]
Thus, Reaction 1 is used as is without any change to match the overall reaction. Therefore, the correct manipulation of Reaction 1 is:
- It remains the same.
1. [tex]\( C + O_2 \rightarrow CO_2, \Delta H = -394 \, \text{kJ} \)[/tex]
2. [tex]\( 3 H_2 + \frac{3}{2} O_2 \rightarrow 3 H_2O, \Delta H = -858 \, \text{kJ} \)[/tex]
3. [tex]\( C_2H_5OH \rightarrow 2 C + 3 H_2 + \frac{1}{2} O_2, \Delta H = +278 \, \text{kJ} \)[/tex]
The goal is to find the enthalpy change ([tex]\(\Delta H^{\circ}\)[/tex]) for the reaction:
[tex]\[ C_2H_5OH + 3 O_2 \rightarrow 2 CO_2 + 3 H_2O \][/tex]
First, consider the desired products and reactants in the goal reaction:
- We need 2 moles of [tex]\(CO_2\)[/tex].
- We need 3 moles of [tex]\(H_2O\)[/tex].
- We start with [tex]\(C_2H_5OH\)[/tex] and [tex]\(O_2\)[/tex].
To achieve this, let's rearrange the given reactions:
Step-by-step breakdown:
1. Start with Reaction 3, which involves [tex]\(C_2H_5OH\)[/tex]:
[tex]\[ C_2H_5OH \rightarrow 2 C + 3 H_2 + \frac{1}{2} O_2, \Delta H = +278 \, \text{kJ} \][/tex]
- This reaction must be reversed to match the [tex]\(C_2H_5OH\)[/tex] on the reactant side:
[tex]\[ 2 C + 3 H_2 + \frac{1}{2} O_2 \rightarrow C_2H_5OH, \Delta H = -278 \, \text{kJ} \][/tex]
2. Use Reaction 1 to form [tex]\(CO_2\)[/tex]:
[tex]\[ C + O_2 \rightarrow CO_2, \Delta H = -394 \, \text{kJ} \][/tex]
- We need 2 moles of [tex]\(CO_2\)[/tex], so Reaction 1 is used twice:
[tex]\[ 2(C + O_2 \rightarrow CO_2) \Rightarrow 2 C + 2 O_2 \rightarrow 2 CO_2, \Delta H = 2 \times -394 = -788 \, \text{kJ} \][/tex]
3. Use Reaction 2 to form [tex]\(H_2O\)[/tex]:
[tex]\[ 3 H_2 + \frac{3}{2} O_2 \rightarrow 3 H_2O, \Delta H = -858 \, \text{kJ} \][/tex]
Combine all the manipulated reactions:
1. [tex]\( 2 C + 3 H_2 + \frac{1}{2} O_2 \rightarrow C_2H_5OH, \Delta H = -278 \, \text{kJ} \)[/tex] (reversed Reaction 3)
2. [tex]\( 2 C + 2 O_2 \rightarrow 2 CO_2, \Delta H = -788 \, \text{kJ} \)[/tex] (twice Reaction 1)
3. [tex]\( 3 H_2 + \frac{3}{2} O_2 \rightarrow 3 H_2O, \Delta H = -858 \, \text{kJ} \)[/tex]
Note that these combinations produce:
[tex]\[ C_2H_5OH + 3 O_2 \rightarrow 2 CO_2 + 3 H_2O \][/tex]
Thus, Reaction 1 is used as is without any change to match the overall reaction. Therefore, the correct manipulation of Reaction 1 is:
- It remains the same.
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.