Welcome to Westonci.ca, where you can find answers to all your questions from a community of experienced professionals. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To solve for the goal reaction [tex]\( \text{N}_2\text{H}_4(l) + \text{H}_2(g) \rightarrow 2\text{NH}_3(g) \)[/tex], we need to manipulate the given reactions and combine them appropriately. Let's go through the steps in detail:
Step 1: Use Reaction 1 as is
[tex]\[ \text{N}_2\text{H}_4(l) + \text{O}_2(g) \rightarrow \text{N}_2(g) + 2\text{H}_2\text{O}(g) \][/tex]
[tex]\[ \Delta H^\circ = -543.0 \frac{\text{kJ}}{\text{mol}} \][/tex]
Step 2: Reverse Reaction 2
[tex]\[ 2\text{H}_2\text{O}(g) \rightarrow 2\text{H}_2(g) + \text{O}_2(g) \][/tex]
[tex]\[ \Delta H^\circ = +484.0 \frac{\text{kJ}}{\text{mol}} \][/tex]
Step 3: Double Reaction 3
[tex]\[ 2(\text{N}_2(g) + 3\text{H}_2(g) \rightarrow 2\text{NH}_3(g)) \][/tex]
[tex]\[ 2\text{N}_2(g) + 6\text{H}_2(g) \rightarrow 4\text{NH}_3(g) \][/tex]
[tex]\[ \Delta H^\circ = 2 \times (-92.2) = -184.4 \frac{\text{kJ}}{\text{mol}} \][/tex]
Combining the reactions:
Now, let's add up these reactions:
1. [tex]\[ \text{N}_2\text{H}_4(l) + \text{O}_2(g) \rightarrow \text{N}_2(g) + 2\text{H}_2\text{O}(g), \Delta H^\circ = -543.0 \frac{\text{kJ}}{\text{mol}} \][/tex]
2. [tex]\[ 2\text{H}_2\text{O}(g) \rightarrow 2\text{H}_2(g) + \text{O}_2(g), \Delta H^\circ = +484.0 \frac{\text{kJ}}{\text{mol}} \][/tex]
3. [tex]\[ 2\text{N}_2(g) + 6\text{H}_2(g) \rightarrow 4\text{NH}_3(g), \Delta H^\circ = -184.4 \frac{\text{kJ}}{\text{mol}} \][/tex]
We can see that:
- The [tex]\(\text{O}_2(g)\)[/tex] cancels out because 1 mole from Reaction 1 and 1 mole from the reversed Reaction 2.
- The [tex]\(2\text{H}_2\text{O}(g)\)[/tex] from Reaction 1 cancels with [tex]\(2\text{H}_2\text{O}(g)\)[/tex] from the reversed Reaction 2.
- The [tex]\(\text{N}_2(g)\)[/tex] cancels out because 1 mole from Reaction 1 and 1 mole from doubled Reaction 3.
This leaves us with the desired reaction:
[tex]\[ \text{N}_2\text{H}_4(l) + \text{H}_2(g) \rightarrow 2\text{NH}_3(g) \][/tex]
By adding up the enthalpy changes:
[tex]\[ \Delta H^\circ = -543.0 + 484.0 - 184.4 = -243.4 \frac{\text{kJ}}{\text{mol}} \][/tex]
So the combined reaction and the enthalpy change are:
[tex]\[ \text{N}_2\text{H}_4(l) + \text{H}_2(g) \rightarrow 2\text{NH}_3(g) \][/tex]
[tex]\[ \Delta H^\circ = -243.4 \frac{\text{kJ}}{\text{mol}} \][/tex]
Step 1: Use Reaction 1 as is
[tex]\[ \text{N}_2\text{H}_4(l) + \text{O}_2(g) \rightarrow \text{N}_2(g) + 2\text{H}_2\text{O}(g) \][/tex]
[tex]\[ \Delta H^\circ = -543.0 \frac{\text{kJ}}{\text{mol}} \][/tex]
Step 2: Reverse Reaction 2
[tex]\[ 2\text{H}_2\text{O}(g) \rightarrow 2\text{H}_2(g) + \text{O}_2(g) \][/tex]
[tex]\[ \Delta H^\circ = +484.0 \frac{\text{kJ}}{\text{mol}} \][/tex]
Step 3: Double Reaction 3
[tex]\[ 2(\text{N}_2(g) + 3\text{H}_2(g) \rightarrow 2\text{NH}_3(g)) \][/tex]
[tex]\[ 2\text{N}_2(g) + 6\text{H}_2(g) \rightarrow 4\text{NH}_3(g) \][/tex]
[tex]\[ \Delta H^\circ = 2 \times (-92.2) = -184.4 \frac{\text{kJ}}{\text{mol}} \][/tex]
Combining the reactions:
Now, let's add up these reactions:
1. [tex]\[ \text{N}_2\text{H}_4(l) + \text{O}_2(g) \rightarrow \text{N}_2(g) + 2\text{H}_2\text{O}(g), \Delta H^\circ = -543.0 \frac{\text{kJ}}{\text{mol}} \][/tex]
2. [tex]\[ 2\text{H}_2\text{O}(g) \rightarrow 2\text{H}_2(g) + \text{O}_2(g), \Delta H^\circ = +484.0 \frac{\text{kJ}}{\text{mol}} \][/tex]
3. [tex]\[ 2\text{N}_2(g) + 6\text{H}_2(g) \rightarrow 4\text{NH}_3(g), \Delta H^\circ = -184.4 \frac{\text{kJ}}{\text{mol}} \][/tex]
We can see that:
- The [tex]\(\text{O}_2(g)\)[/tex] cancels out because 1 mole from Reaction 1 and 1 mole from the reversed Reaction 2.
- The [tex]\(2\text{H}_2\text{O}(g)\)[/tex] from Reaction 1 cancels with [tex]\(2\text{H}_2\text{O}(g)\)[/tex] from the reversed Reaction 2.
- The [tex]\(\text{N}_2(g)\)[/tex] cancels out because 1 mole from Reaction 1 and 1 mole from doubled Reaction 3.
This leaves us with the desired reaction:
[tex]\[ \text{N}_2\text{H}_4(l) + \text{H}_2(g) \rightarrow 2\text{NH}_3(g) \][/tex]
By adding up the enthalpy changes:
[tex]\[ \Delta H^\circ = -543.0 + 484.0 - 184.4 = -243.4 \frac{\text{kJ}}{\text{mol}} \][/tex]
So the combined reaction and the enthalpy change are:
[tex]\[ \text{N}_2\text{H}_4(l) + \text{H}_2(g) \rightarrow 2\text{NH}_3(g) \][/tex]
[tex]\[ \Delta H^\circ = -243.4 \frac{\text{kJ}}{\text{mol}} \][/tex]
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.