Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Get the answers you need quickly and accurately from a dedicated community of experts on our Q&A platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To solve for the goal reaction [tex]\( \text{N}_2\text{H}_4(l) + \text{H}_2(g) \rightarrow 2\text{NH}_3(g) \)[/tex], we need to manipulate the given reactions and combine them appropriately. Let's go through the steps in detail:
Step 1: Use Reaction 1 as is
[tex]\[ \text{N}_2\text{H}_4(l) + \text{O}_2(g) \rightarrow \text{N}_2(g) + 2\text{H}_2\text{O}(g) \][/tex]
[tex]\[ \Delta H^\circ = -543.0 \frac{\text{kJ}}{\text{mol}} \][/tex]
Step 2: Reverse Reaction 2
[tex]\[ 2\text{H}_2\text{O}(g) \rightarrow 2\text{H}_2(g) + \text{O}_2(g) \][/tex]
[tex]\[ \Delta H^\circ = +484.0 \frac{\text{kJ}}{\text{mol}} \][/tex]
Step 3: Double Reaction 3
[tex]\[ 2(\text{N}_2(g) + 3\text{H}_2(g) \rightarrow 2\text{NH}_3(g)) \][/tex]
[tex]\[ 2\text{N}_2(g) + 6\text{H}_2(g) \rightarrow 4\text{NH}_3(g) \][/tex]
[tex]\[ \Delta H^\circ = 2 \times (-92.2) = -184.4 \frac{\text{kJ}}{\text{mol}} \][/tex]
Combining the reactions:
Now, let's add up these reactions:
1. [tex]\[ \text{N}_2\text{H}_4(l) + \text{O}_2(g) \rightarrow \text{N}_2(g) + 2\text{H}_2\text{O}(g), \Delta H^\circ = -543.0 \frac{\text{kJ}}{\text{mol}} \][/tex]
2. [tex]\[ 2\text{H}_2\text{O}(g) \rightarrow 2\text{H}_2(g) + \text{O}_2(g), \Delta H^\circ = +484.0 \frac{\text{kJ}}{\text{mol}} \][/tex]
3. [tex]\[ 2\text{N}_2(g) + 6\text{H}_2(g) \rightarrow 4\text{NH}_3(g), \Delta H^\circ = -184.4 \frac{\text{kJ}}{\text{mol}} \][/tex]
We can see that:
- The [tex]\(\text{O}_2(g)\)[/tex] cancels out because 1 mole from Reaction 1 and 1 mole from the reversed Reaction 2.
- The [tex]\(2\text{H}_2\text{O}(g)\)[/tex] from Reaction 1 cancels with [tex]\(2\text{H}_2\text{O}(g)\)[/tex] from the reversed Reaction 2.
- The [tex]\(\text{N}_2(g)\)[/tex] cancels out because 1 mole from Reaction 1 and 1 mole from doubled Reaction 3.
This leaves us with the desired reaction:
[tex]\[ \text{N}_2\text{H}_4(l) + \text{H}_2(g) \rightarrow 2\text{NH}_3(g) \][/tex]
By adding up the enthalpy changes:
[tex]\[ \Delta H^\circ = -543.0 + 484.0 - 184.4 = -243.4 \frac{\text{kJ}}{\text{mol}} \][/tex]
So the combined reaction and the enthalpy change are:
[tex]\[ \text{N}_2\text{H}_4(l) + \text{H}_2(g) \rightarrow 2\text{NH}_3(g) \][/tex]
[tex]\[ \Delta H^\circ = -243.4 \frac{\text{kJ}}{\text{mol}} \][/tex]
Step 1: Use Reaction 1 as is
[tex]\[ \text{N}_2\text{H}_4(l) + \text{O}_2(g) \rightarrow \text{N}_2(g) + 2\text{H}_2\text{O}(g) \][/tex]
[tex]\[ \Delta H^\circ = -543.0 \frac{\text{kJ}}{\text{mol}} \][/tex]
Step 2: Reverse Reaction 2
[tex]\[ 2\text{H}_2\text{O}(g) \rightarrow 2\text{H}_2(g) + \text{O}_2(g) \][/tex]
[tex]\[ \Delta H^\circ = +484.0 \frac{\text{kJ}}{\text{mol}} \][/tex]
Step 3: Double Reaction 3
[tex]\[ 2(\text{N}_2(g) + 3\text{H}_2(g) \rightarrow 2\text{NH}_3(g)) \][/tex]
[tex]\[ 2\text{N}_2(g) + 6\text{H}_2(g) \rightarrow 4\text{NH}_3(g) \][/tex]
[tex]\[ \Delta H^\circ = 2 \times (-92.2) = -184.4 \frac{\text{kJ}}{\text{mol}} \][/tex]
Combining the reactions:
Now, let's add up these reactions:
1. [tex]\[ \text{N}_2\text{H}_4(l) + \text{O}_2(g) \rightarrow \text{N}_2(g) + 2\text{H}_2\text{O}(g), \Delta H^\circ = -543.0 \frac{\text{kJ}}{\text{mol}} \][/tex]
2. [tex]\[ 2\text{H}_2\text{O}(g) \rightarrow 2\text{H}_2(g) + \text{O}_2(g), \Delta H^\circ = +484.0 \frac{\text{kJ}}{\text{mol}} \][/tex]
3. [tex]\[ 2\text{N}_2(g) + 6\text{H}_2(g) \rightarrow 4\text{NH}_3(g), \Delta H^\circ = -184.4 \frac{\text{kJ}}{\text{mol}} \][/tex]
We can see that:
- The [tex]\(\text{O}_2(g)\)[/tex] cancels out because 1 mole from Reaction 1 and 1 mole from the reversed Reaction 2.
- The [tex]\(2\text{H}_2\text{O}(g)\)[/tex] from Reaction 1 cancels with [tex]\(2\text{H}_2\text{O}(g)\)[/tex] from the reversed Reaction 2.
- The [tex]\(\text{N}_2(g)\)[/tex] cancels out because 1 mole from Reaction 1 and 1 mole from doubled Reaction 3.
This leaves us with the desired reaction:
[tex]\[ \text{N}_2\text{H}_4(l) + \text{H}_2(g) \rightarrow 2\text{NH}_3(g) \][/tex]
By adding up the enthalpy changes:
[tex]\[ \Delta H^\circ = -543.0 + 484.0 - 184.4 = -243.4 \frac{\text{kJ}}{\text{mol}} \][/tex]
So the combined reaction and the enthalpy change are:
[tex]\[ \text{N}_2\text{H}_4(l) + \text{H}_2(g) \rightarrow 2\text{NH}_3(g) \][/tex]
[tex]\[ \Delta H^\circ = -243.4 \frac{\text{kJ}}{\text{mol}} \][/tex]
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.