Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Find reliable answers to your questions from a wide community of knowledgeable experts on our user-friendly Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To find the value of [tex]\( d \)[/tex] such that [tex]\( (2d + 1), (2d - 1) \)[/tex], and [tex]\( (3d + 4) \)[/tex] are in an Arithmetic Sequence (AS), we need to ensure that the middle term is the average of the first and third terms. This means:
[tex]\[ 2(2d - 1) = (2d + 1) + (3d + 4) \][/tex]
Let's break this down step-by-step.
1. Write down the condition for terms in an arithmetic progression (AS):
[tex]\[ 2b = a + c \][/tex]
Here:
[tex]\[ a = 2d + 1 \][/tex]
[tex]\[ b = 2d - 1 \][/tex]
[tex]\[ c = 3d + 4 \][/tex]
2. Substitute the values of [tex]\( a \)[/tex], [tex]\( b \)[/tex], and [tex]\( c \)[/tex] into the AS condition:
[tex]\[ 2(2d - 1) = (2d + 1) + (3d + 4) \][/tex]
3. Simplify both sides of the equation:
[tex]\[ 2(2d - 1) = 4d - 2 \][/tex]
[tex]\[ (2d + 1) + (3d + 4) = 5d + 5 \][/tex]
4. Set the simplified expressions equal to each other:
[tex]\[ 4d - 2 = 5d + 5 \][/tex]
5. Solve for [tex]\( d \)[/tex]:
[tex]\[ 4d - 2 = 5d + 5 \][/tex]
Subtract [tex]\( 4d \)[/tex] from both sides:
[tex]\[ -2 = d + 5 \][/tex]
Subtract 5 from both sides:
[tex]\[ -7 = d \][/tex]
Therefore, the value of [tex]\( d \)[/tex] that ensures [tex]\( (2d + 1), (2d - 1) \)[/tex], and [tex]\( (3d + 4) \)[/tex] are in an Arithmetic Sequence is:
[tex]\[ \boxed{-7} \][/tex]
[tex]\[ 2(2d - 1) = (2d + 1) + (3d + 4) \][/tex]
Let's break this down step-by-step.
1. Write down the condition for terms in an arithmetic progression (AS):
[tex]\[ 2b = a + c \][/tex]
Here:
[tex]\[ a = 2d + 1 \][/tex]
[tex]\[ b = 2d - 1 \][/tex]
[tex]\[ c = 3d + 4 \][/tex]
2. Substitute the values of [tex]\( a \)[/tex], [tex]\( b \)[/tex], and [tex]\( c \)[/tex] into the AS condition:
[tex]\[ 2(2d - 1) = (2d + 1) + (3d + 4) \][/tex]
3. Simplify both sides of the equation:
[tex]\[ 2(2d - 1) = 4d - 2 \][/tex]
[tex]\[ (2d + 1) + (3d + 4) = 5d + 5 \][/tex]
4. Set the simplified expressions equal to each other:
[tex]\[ 4d - 2 = 5d + 5 \][/tex]
5. Solve for [tex]\( d \)[/tex]:
[tex]\[ 4d - 2 = 5d + 5 \][/tex]
Subtract [tex]\( 4d \)[/tex] from both sides:
[tex]\[ -2 = d + 5 \][/tex]
Subtract 5 from both sides:
[tex]\[ -7 = d \][/tex]
Therefore, the value of [tex]\( d \)[/tex] that ensures [tex]\( (2d + 1), (2d - 1) \)[/tex], and [tex]\( (3d + 4) \)[/tex] are in an Arithmetic Sequence is:
[tex]\[ \boxed{-7} \][/tex]
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. We hope this was helpful. Please come back whenever you need more information or answers to your queries. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.