Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Connect with a community of experts ready to provide precise solutions to your questions quickly and accurately. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
Sure, let’s break down the expression step by step:
Given the expression:
[tex]\[ \frac{x^2}{y^2} - 2 - \frac{3 y^2}{x^2} \][/tex]
### Step 1: Identify and understand each term in the expression.
1. The first term is [tex]\(\frac{x^2}{y^2}\)[/tex], which represents the ratio of [tex]\(x^2\)[/tex] to [tex]\(y^2\)[/tex].
2. The second term is [tex]\(-2\)[/tex], a constant.
3. The third term is [tex]\(-\frac{3y^2}{x^2}\)[/tex], which represents negative three times the ratio of [tex]\(y^2\)[/tex] to [tex]\(x^2\)[/tex].
### Step 2: Simplify each term as much as possible (if applicable).
- [tex]\(\frac{x^2}{y^2}\)[/tex]: This term is already simplified.
- [tex]\(-2\)[/tex]: This term is a constant and does not need further simplification.
- [tex]\(-\frac{3 y^2}{x^2}\)[/tex]: This term is already simplified.
### Step 3: Combine all the terms to form the simplified expression.
Putting it all together, we have the expression:
[tex]\[ \frac{x^2}{y^2} - 2 - \frac{3 y^2}{x^2} \][/tex]
### Step 4: Consider any restrictions or special cases (usually where variables cannot equal certain values to avoid division by zero).
- [tex]\(y \neq 0\)[/tex] because division by zero is undefined.
- [tex]\(x \neq 0\)[/tex] because division by zero is undefined in the term [tex]\(\frac{3 y^2}{x^2}\)[/tex].
Thus, the final expression in simplified form is:
[tex]\[ \frac{x^2}{y^2} - 2 - \frac{3 y^2}{x^2} \][/tex]
This is the expression as simplified as possible.
Given the expression:
[tex]\[ \frac{x^2}{y^2} - 2 - \frac{3 y^2}{x^2} \][/tex]
### Step 1: Identify and understand each term in the expression.
1. The first term is [tex]\(\frac{x^2}{y^2}\)[/tex], which represents the ratio of [tex]\(x^2\)[/tex] to [tex]\(y^2\)[/tex].
2. The second term is [tex]\(-2\)[/tex], a constant.
3. The third term is [tex]\(-\frac{3y^2}{x^2}\)[/tex], which represents negative three times the ratio of [tex]\(y^2\)[/tex] to [tex]\(x^2\)[/tex].
### Step 2: Simplify each term as much as possible (if applicable).
- [tex]\(\frac{x^2}{y^2}\)[/tex]: This term is already simplified.
- [tex]\(-2\)[/tex]: This term is a constant and does not need further simplification.
- [tex]\(-\frac{3 y^2}{x^2}\)[/tex]: This term is already simplified.
### Step 3: Combine all the terms to form the simplified expression.
Putting it all together, we have the expression:
[tex]\[ \frac{x^2}{y^2} - 2 - \frac{3 y^2}{x^2} \][/tex]
### Step 4: Consider any restrictions or special cases (usually where variables cannot equal certain values to avoid division by zero).
- [tex]\(y \neq 0\)[/tex] because division by zero is undefined.
- [tex]\(x \neq 0\)[/tex] because division by zero is undefined in the term [tex]\(\frac{3 y^2}{x^2}\)[/tex].
Thus, the final expression in simplified form is:
[tex]\[ \frac{x^2}{y^2} - 2 - \frac{3 y^2}{x^2} \][/tex]
This is the expression as simplified as possible.
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.