Looking for reliable answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Get immediate answers to your questions from a wide network of experienced professionals on our Q&A platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
Sure, let’s break down the expression step by step:
Given the expression:
[tex]\[ \frac{x^2}{y^2} - 2 - \frac{3 y^2}{x^2} \][/tex]
### Step 1: Identify and understand each term in the expression.
1. The first term is [tex]\(\frac{x^2}{y^2}\)[/tex], which represents the ratio of [tex]\(x^2\)[/tex] to [tex]\(y^2\)[/tex].
2. The second term is [tex]\(-2\)[/tex], a constant.
3. The third term is [tex]\(-\frac{3y^2}{x^2}\)[/tex], which represents negative three times the ratio of [tex]\(y^2\)[/tex] to [tex]\(x^2\)[/tex].
### Step 2: Simplify each term as much as possible (if applicable).
- [tex]\(\frac{x^2}{y^2}\)[/tex]: This term is already simplified.
- [tex]\(-2\)[/tex]: This term is a constant and does not need further simplification.
- [tex]\(-\frac{3 y^2}{x^2}\)[/tex]: This term is already simplified.
### Step 3: Combine all the terms to form the simplified expression.
Putting it all together, we have the expression:
[tex]\[ \frac{x^2}{y^2} - 2 - \frac{3 y^2}{x^2} \][/tex]
### Step 4: Consider any restrictions or special cases (usually where variables cannot equal certain values to avoid division by zero).
- [tex]\(y \neq 0\)[/tex] because division by zero is undefined.
- [tex]\(x \neq 0\)[/tex] because division by zero is undefined in the term [tex]\(\frac{3 y^2}{x^2}\)[/tex].
Thus, the final expression in simplified form is:
[tex]\[ \frac{x^2}{y^2} - 2 - \frac{3 y^2}{x^2} \][/tex]
This is the expression as simplified as possible.
Given the expression:
[tex]\[ \frac{x^2}{y^2} - 2 - \frac{3 y^2}{x^2} \][/tex]
### Step 1: Identify and understand each term in the expression.
1. The first term is [tex]\(\frac{x^2}{y^2}\)[/tex], which represents the ratio of [tex]\(x^2\)[/tex] to [tex]\(y^2\)[/tex].
2. The second term is [tex]\(-2\)[/tex], a constant.
3. The third term is [tex]\(-\frac{3y^2}{x^2}\)[/tex], which represents negative three times the ratio of [tex]\(y^2\)[/tex] to [tex]\(x^2\)[/tex].
### Step 2: Simplify each term as much as possible (if applicable).
- [tex]\(\frac{x^2}{y^2}\)[/tex]: This term is already simplified.
- [tex]\(-2\)[/tex]: This term is a constant and does not need further simplification.
- [tex]\(-\frac{3 y^2}{x^2}\)[/tex]: This term is already simplified.
### Step 3: Combine all the terms to form the simplified expression.
Putting it all together, we have the expression:
[tex]\[ \frac{x^2}{y^2} - 2 - \frac{3 y^2}{x^2} \][/tex]
### Step 4: Consider any restrictions or special cases (usually where variables cannot equal certain values to avoid division by zero).
- [tex]\(y \neq 0\)[/tex] because division by zero is undefined.
- [tex]\(x \neq 0\)[/tex] because division by zero is undefined in the term [tex]\(\frac{3 y^2}{x^2}\)[/tex].
Thus, the final expression in simplified form is:
[tex]\[ \frac{x^2}{y^2} - 2 - \frac{3 y^2}{x^2} \][/tex]
This is the expression as simplified as possible.
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.