Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
Sure, let's go through the problem step-by-step.
1. First, we need to understand the reaction provided:
[tex]\[ N_2H_4(l) + O_2(g) \rightarrow N_2(g) + 2H_2O(g) \][/tex]
2. The standard enthalpy change ([tex]\(\Delta H^{\circ}\)[/tex]) for this reaction is given as:
[tex]\[ \Delta H^{\circ} = -543.0 \ \frac{kJ}{mol} \][/tex]
This means that for every mole of [tex]\(N_2H_4\)[/tex] reacting with [tex]\(O_2\)[/tex] under standard conditions, 543.0 kJ of energy is released (hence the negative sign).
3. Since the given problem states that the reaction remains unchanged to connect with the goal reaction, the enthalpy change for the modified reaction is the same as the standard enthalpy change provided.
4. Therefore, the enthalpy for the modified reaction is:
[tex]\[ \Delta H^{\circ} = -543.0 \ \frac{kJ}{mol} \][/tex]
This concludes the detailed explanation. The final answer should include the sign and the magnitude of the enthalpy change with an appropriate unit and significant figures.
[tex]\[ \boxed{-543.0 \ \frac{kJ}{mol}} \][/tex]
1. First, we need to understand the reaction provided:
[tex]\[ N_2H_4(l) + O_2(g) \rightarrow N_2(g) + 2H_2O(g) \][/tex]
2. The standard enthalpy change ([tex]\(\Delta H^{\circ}\)[/tex]) for this reaction is given as:
[tex]\[ \Delta H^{\circ} = -543.0 \ \frac{kJ}{mol} \][/tex]
This means that for every mole of [tex]\(N_2H_4\)[/tex] reacting with [tex]\(O_2\)[/tex] under standard conditions, 543.0 kJ of energy is released (hence the negative sign).
3. Since the given problem states that the reaction remains unchanged to connect with the goal reaction, the enthalpy change for the modified reaction is the same as the standard enthalpy change provided.
4. Therefore, the enthalpy for the modified reaction is:
[tex]\[ \Delta H^{\circ} = -543.0 \ \frac{kJ}{mol} \][/tex]
This concludes the detailed explanation. The final answer should include the sign and the magnitude of the enthalpy change with an appropriate unit and significant figures.
[tex]\[ \boxed{-543.0 \ \frac{kJ}{mol}} \][/tex]
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.