madey21
Answered

Welcome to Westonci.ca, where you can find answers to all your questions from a community of experienced professionals. Discover comprehensive answers to your questions from knowledgeable professionals on our user-friendly platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.

The adjusted equations and enthalpies are given below.
[tex]\[
\begin{array}{ll}
N_2H_4(l) + O_2(g) \rightarrow N_2(g) + 2H_2O(g) \\
2H_2O(g) \rightarrow 2H_2(g) + O_2(g) & \Delta H^{\circ} = -543.0 \frac{\text{kJ}}{\text{mol}} \\
N_2(g) + 3H_2(g) \rightarrow 2NH_3(g) & \Delta H^{\circ} = -984.0 \frac{\text{kJ}}{\text{mol}}
\end{array}
\][/tex]

What is [tex]\(\Delta H^{\circ}\)[/tex] for the goal reaction?
[tex]\[
N_2H_4(l) + H_2(g) \rightarrow 2NH_3(g)
\][/tex]

Enter either a + or - sign AND the magnitude. Use significant figures.


Sagot :

To determine [tex]\(\Delta H^\circ\)[/tex] for the goal reaction:

[tex]\[N_2H_4(l) + H_2(g) \rightarrow 2NH_3(g),\][/tex]

we use Hess's Law, which states that the total enthalpy change for a given reaction is the sum of the enthalpy changes for the intermediate steps that lead to that reaction.

Given the adjusted reactions and their respective enthalpies, we can derive the goal reaction.
1. Input adjusted reaction:
[tex]\[N_2H_4(l) + O_2(g) \rightarrow N_2(g) + 2H_2O(g)\][/tex]

2. Reverse the enthalpy of the second reaction (multiply by -1):
[tex]\[2H_2O(g) \rightarrow 2H_2(g) + O_2(g), \quad \Delta H^\circ = +543.0 \, \text{kJ/mol}\][/tex]

3. Retain the third reaction as it is:
[tex]\[N_2(g) + 3H_2(g) \rightarrow 2NH_3(g), \quad \Delta H^\circ = -984.0 \, \text{kJ/mol}\][/tex]

Now, sum these reactions to obtain the goal reaction:
[tex]\[ \begin{align*} &N_2H_4(l) + O_2(g) \rightarrow N_2(g) + 2H_2O(g)\\ &2H_2O(g) \rightarrow 2H_2(g) + O_2(g), \quad \Delta H^\circ = +543.0 \, \text{kJ/mol}\\ &N_2(g) + 3H_2(g) \rightarrow 2NH_3(g), \quad \Delta H^\circ = -984.0 \, \text{kJ/mol} \end{align*} \][/tex]

Adding them together:
[tex]\[ N_2H_4(l) + O_2(g) + 2H_2O(g) + N_2(g) + 3H_2(g) \rightarrow N_2(g) + 2H_2O(g) + 2H_2(g) + 2NH_3(g) \][/tex]

On simplifying:
[tex]\[N_2H_4(l) + H_2(g) \rightarrow 2 NH_3(g)\][/tex]

Sum the enthalpies for the reactions:
[tex]\[ \Delta H^\circ = +543.0 + (-984.0) = -441.0 \, \text{kJ/mol} \][/tex]

Thus,
[tex]\[ \Delta H^\circ = -1527.0 \, \text{kJ/mol} \][/tex]

Hence, the enthalpy change [tex]\(\Delta H^\circ\)[/tex] for the goal reaction [tex]\(N_2H_4(l) + H_2(g) \rightarrow 2NH_3(g)\)[/tex] is:

[tex]\[ \boxed{-1527.0 \, \text{kJ/mol}} \][/tex]
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.