Westonci.ca is your trusted source for finding answers to a wide range of questions, backed by a knowledgeable community. Discover reliable solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To locate [tex]\(\sqrt{6.5}\)[/tex] on the number line, follow these comprehensive steps to understand its position:
1. Identify the interval:
- Recognize that [tex]\(6.5\)[/tex] is a bit more than [tex]\(6\)[/tex], and a bit less than [tex]\(7\)[/tex].
- The square roots of [tex]\(6\)[/tex] and [tex]\(7\)[/tex] thus form a range. We calculate square roots of these bounds to know our approximate range:
[tex]\[ \sqrt{6} \approx 2.449 \quad \text{and} \quad \sqrt{7} \approx 2.646 \][/tex]
2. Range verification:
- [tex]\(\sqrt{6.5}\)[/tex] will lie somewhere between [tex]\(\sqrt{6}\)[/tex] and [tex]\(\sqrt{7}\)[/tex]:
[tex]\[ 2.449 < \sqrt{6.5} < 2.646 \][/tex]
3. Exact calculation details (result provided):
- The precise value of [tex]\(\sqrt{6.5}\)[/tex] is approximately [tex]\(2.5495097567963922\)[/tex].
4. Locate on the number line:
- First, mark the values [tex]\(2\)[/tex] and [tex]\(3\)[/tex] on the number line.
- Then, divide the interval between [tex]\(2\)[/tex] and [tex]\(3\)[/tex] into ten equal segments to mark the tenths positions such as [tex]\(2.1, 2.2, \ldots, 2.9\)[/tex].
5. Refine between 2.5 and 2.6:
- Narrow down between the relevant markings [tex]\(2.5\)[/tex] and [tex]\(2.6\)[/tex].
- [tex]\(2.5495097567963922\)[/tex] is slightly less than halfway between these two points.
6. Plot the point:
- Place a mark slightly less than halfway between [tex]\(2.5\)[/tex] and [tex]\(2.6\)[/tex] on the number line. This is where [tex]\(\sqrt{6.5}\)[/tex] is located, very close to [tex]\(2.55\)[/tex].
By following these steps, you can accurately estimate and plot [tex]\(\sqrt{6.5}\)[/tex] on a number line. Keep in mind, the exact position is close to [tex]\(2.55\)[/tex], giving us a precise location for [tex]\(\sqrt{6.5}\)[/tex].
1. Identify the interval:
- Recognize that [tex]\(6.5\)[/tex] is a bit more than [tex]\(6\)[/tex], and a bit less than [tex]\(7\)[/tex].
- The square roots of [tex]\(6\)[/tex] and [tex]\(7\)[/tex] thus form a range. We calculate square roots of these bounds to know our approximate range:
[tex]\[ \sqrt{6} \approx 2.449 \quad \text{and} \quad \sqrt{7} \approx 2.646 \][/tex]
2. Range verification:
- [tex]\(\sqrt{6.5}\)[/tex] will lie somewhere between [tex]\(\sqrt{6}\)[/tex] and [tex]\(\sqrt{7}\)[/tex]:
[tex]\[ 2.449 < \sqrt{6.5} < 2.646 \][/tex]
3. Exact calculation details (result provided):
- The precise value of [tex]\(\sqrt{6.5}\)[/tex] is approximately [tex]\(2.5495097567963922\)[/tex].
4. Locate on the number line:
- First, mark the values [tex]\(2\)[/tex] and [tex]\(3\)[/tex] on the number line.
- Then, divide the interval between [tex]\(2\)[/tex] and [tex]\(3\)[/tex] into ten equal segments to mark the tenths positions such as [tex]\(2.1, 2.2, \ldots, 2.9\)[/tex].
5. Refine between 2.5 and 2.6:
- Narrow down between the relevant markings [tex]\(2.5\)[/tex] and [tex]\(2.6\)[/tex].
- [tex]\(2.5495097567963922\)[/tex] is slightly less than halfway between these two points.
6. Plot the point:
- Place a mark slightly less than halfway between [tex]\(2.5\)[/tex] and [tex]\(2.6\)[/tex] on the number line. This is where [tex]\(\sqrt{6.5}\)[/tex] is located, very close to [tex]\(2.55\)[/tex].
By following these steps, you can accurately estimate and plot [tex]\(\sqrt{6.5}\)[/tex] on a number line. Keep in mind, the exact position is close to [tex]\(2.55\)[/tex], giving us a precise location for [tex]\(\sqrt{6.5}\)[/tex].
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.