Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To express a cosine function in a generalized form, we use the following structure:
[tex]\[ y = A \cos \left( \frac{2\pi}{T} (x - P) \right) + V \][/tex]
Here's a detailed explanation of each component in this formula:
1. Amplitude (A):
- This is the coefficient in front of the cosine function, denoted as [tex]\( A \)[/tex].
- It represents the maximum value of the function's displacement from its equilibrium position (the vertical stretch or shrink).
2. Period (T):
- [tex]\( T \)[/tex] is the period of the function, indicating how long it takes for the function to complete one full cycle.
- The term [tex]\(\frac{2\pi}{T}\)[/tex] inside the cosine function adjusts the frequency of the cosine wave accordingly.
3. Phase Shift (P):
- [tex]\( P \)[/tex] represents the horizontal shift along the x-axis.
- If [tex]\( P \)[/tex] is positive, the graph shifts to the right by [tex]\( P \)[/tex] units; if [tex]\( P \)[/tex] is negative, the graph shifts to the left by [tex]\( |P| \)[/tex] units.
4. Vertical Shift (V):
- This is the constant added at the end of the function, denoted as [tex]\( V \)[/tex].
- It represents the upward or downward shift of the entire graph.
Given these components, we can rewrite the given structure to match the definitions:
[tex]\[ y = A \cos \left( \frac{2\pi}{T} (x - P) \right) + V \][/tex]
In this context:
- The amplitude, [tex]\( A \)[/tex], remains a general placeholder.
- The period, represented by [tex]\( T \)[/tex], defines the frequency.
- The phase shift, denoted by [tex]\( P \)[/tex], indicates the horizontal displacement.
- The vertical shift, denoted by [tex]\( V \)[/tex], adjusts the graph vertically.
Therefore, the formula for the function [tex]\( y \)[/tex] in the given structure is:
[tex]\[ y = A \cos \left( \frac{2 \pi}{T} (x - P) \right) + V \][/tex]
[tex]\[ y = A \cos \left( \frac{2\pi}{T} (x - P) \right) + V \][/tex]
Here's a detailed explanation of each component in this formula:
1. Amplitude (A):
- This is the coefficient in front of the cosine function, denoted as [tex]\( A \)[/tex].
- It represents the maximum value of the function's displacement from its equilibrium position (the vertical stretch or shrink).
2. Period (T):
- [tex]\( T \)[/tex] is the period of the function, indicating how long it takes for the function to complete one full cycle.
- The term [tex]\(\frac{2\pi}{T}\)[/tex] inside the cosine function adjusts the frequency of the cosine wave accordingly.
3. Phase Shift (P):
- [tex]\( P \)[/tex] represents the horizontal shift along the x-axis.
- If [tex]\( P \)[/tex] is positive, the graph shifts to the right by [tex]\( P \)[/tex] units; if [tex]\( P \)[/tex] is negative, the graph shifts to the left by [tex]\( |P| \)[/tex] units.
4. Vertical Shift (V):
- This is the constant added at the end of the function, denoted as [tex]\( V \)[/tex].
- It represents the upward or downward shift of the entire graph.
Given these components, we can rewrite the given structure to match the definitions:
[tex]\[ y = A \cos \left( \frac{2\pi}{T} (x - P) \right) + V \][/tex]
In this context:
- The amplitude, [tex]\( A \)[/tex], remains a general placeholder.
- The period, represented by [tex]\( T \)[/tex], defines the frequency.
- The phase shift, denoted by [tex]\( P \)[/tex], indicates the horizontal displacement.
- The vertical shift, denoted by [tex]\( V \)[/tex], adjusts the graph vertically.
Therefore, the formula for the function [tex]\( y \)[/tex] in the given structure is:
[tex]\[ y = A \cos \left( \frac{2 \pi}{T} (x - P) \right) + V \][/tex]
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.