Welcome to Westonci.ca, your one-stop destination for finding answers to all your questions. Join our expert community now! Get the answers you need quickly and accurately from a dedicated community of experts on our Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To determine the domain of the variable [tex]\( x \)[/tex] in the equation
[tex]\[ \frac{1}{x^2-16} - \frac{4}{x-4} = \frac{1}{x+4}, \][/tex]
we need to identify any values of [tex]\( x \)[/tex] that would make any denominators zero, since division by zero is undefined.
1. Identify the denominators:
- The first term's denominator is [tex]\( x^2 - 16 \)[/tex].
- The second term's denominator is [tex]\( x - 4 \)[/tex].
- The third term's denominator is [tex]\( x + 4 \)[/tex].
2. Find values that make the denominators zero:
- For the first term [tex]\( \frac{1}{x^2 - 16} \)[/tex]:
[tex]\[ x^2 - 16 = 0 \implies x^2 = 16 \implies x = \pm 4. \][/tex]
- For the second term [tex]\( \frac{4}{x - 4} \)[/tex]:
[tex]\[ x - 4 = 0 \implies x = 4. \][/tex]
- For the third term [tex]\( \frac{1}{x+4} \)[/tex]:
[tex]\[ x + 4 = 0 \implies x = -4. \][/tex]
3. Combine the excluded values:
The values that [tex]\( x \)[/tex] cannot take are [tex]\( x = 4 \)[/tex] and [tex]\( x = -4 \)[/tex].
So, compiling these results, we conclude that the values [tex]\( x = 4 \)[/tex] and [tex]\( x = -4 \)[/tex] make at least one of the denominators zero and hence must be excluded from the domain.
Therefore, the domain of the given equation is all real numbers except [tex]\( x = 4 \)[/tex] and [tex]\( x = -4 \)[/tex].
The correct choice is:
A. The domain is [tex]\( \{ x \mid x \text{ is a real number, } x \neq -4, 4 \} \)[/tex].
So, the filled answer box should be:
[tex]\[ \boxed{-4, 4} \][/tex]
[tex]\[ \frac{1}{x^2-16} - \frac{4}{x-4} = \frac{1}{x+4}, \][/tex]
we need to identify any values of [tex]\( x \)[/tex] that would make any denominators zero, since division by zero is undefined.
1. Identify the denominators:
- The first term's denominator is [tex]\( x^2 - 16 \)[/tex].
- The second term's denominator is [tex]\( x - 4 \)[/tex].
- The third term's denominator is [tex]\( x + 4 \)[/tex].
2. Find values that make the denominators zero:
- For the first term [tex]\( \frac{1}{x^2 - 16} \)[/tex]:
[tex]\[ x^2 - 16 = 0 \implies x^2 = 16 \implies x = \pm 4. \][/tex]
- For the second term [tex]\( \frac{4}{x - 4} \)[/tex]:
[tex]\[ x - 4 = 0 \implies x = 4. \][/tex]
- For the third term [tex]\( \frac{1}{x+4} \)[/tex]:
[tex]\[ x + 4 = 0 \implies x = -4. \][/tex]
3. Combine the excluded values:
The values that [tex]\( x \)[/tex] cannot take are [tex]\( x = 4 \)[/tex] and [tex]\( x = -4 \)[/tex].
So, compiling these results, we conclude that the values [tex]\( x = 4 \)[/tex] and [tex]\( x = -4 \)[/tex] make at least one of the denominators zero and hence must be excluded from the domain.
Therefore, the domain of the given equation is all real numbers except [tex]\( x = 4 \)[/tex] and [tex]\( x = -4 \)[/tex].
The correct choice is:
A. The domain is [tex]\( \{ x \mid x \text{ is a real number, } x \neq -4, 4 \} \)[/tex].
So, the filled answer box should be:
[tex]\[ \boxed{-4, 4} \][/tex]
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.