Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Explore a wealth of knowledge from professionals across different disciplines on our comprehensive platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
### Step-by-Step Solution:
#### 1. Which has a higher molecular weight: [tex]\( \text{NaCl} \)[/tex] or [tex]\( \text{CaCl}_2 \)[/tex]?
To determine the molecular weights, we sum the atomic weights of the elements in each compound:
- For [tex]\( \text{NaCl} \)[/tex]:
- Sodium (Na) has an atomic weight of 23.
- Chlorine (Cl) has an atomic weight of 35.5.
- Hence, the molecular weight of NaCl is [tex]\( 23 + 35.5 = 58.5 \)[/tex] g/mol.
- For [tex]\( \text{CaCl}_2 \)[/tex]:
- Calcium (Ca) has an atomic weight of 40.
- Chlorine (Cl) has an atomic weight of 35.5, and there are two chlorine atoms.
- Hence, the molecular weight of [tex]\( \text{CaCl}_2 \)[/tex] is [tex]\( 40 + 2 \times 35.5 = 111 \)[/tex] g/mol.
Therefore, [tex]\( \text{CaCl}_2 \)[/tex] has a higher molecular weight of 111 g/mol compared to [tex]\( \text{NaCl} \)[/tex] which has a molecular weight of 58.5 g/mol.
#### 2. How many ions does [tex]\( \text{NaCl} \)[/tex] dissociate into? How many ions does [tex]\( \text{CaCl}_2 \)[/tex] dissociate into?
- [tex]\( \text{NaCl} \)[/tex] dissociates into:
- One sodium ion (Na[tex]\(^+\)[/tex])
- One chloride ion (Cl[tex]\(^-\)[/tex])
- Total: [tex]\( 2 \)[/tex] ions.
- [tex]\( \text{CaCl}_2 \)[/tex] dissociates into:
- One calcium ion (Ca[tex]\(^2+\)[/tex])
- Two chloride ions (2Cl[tex]\(^-\)[/tex])
- Total: [tex]\( 3 \)[/tex] ions.
#### 3. About how many moles of [tex]\( \text{NaCl} \)[/tex] are in a cc (approximately 1.1 g) of [tex]\( \text{NaCl} \)[/tex]?
To find the moles of [tex]\( \text{NaCl} \)[/tex], we use the formula:
[tex]\[ \text{Moles} = \frac{\text{Mass (g)}}{\text{Molar Mass (g/mol)}} \][/tex]
For [tex]\( \text{NaCl} \)[/tex]:
- Mass = 1.1 g
- Molar Mass = 58.5 g/mol
Hence,
[tex]\[ \text{Moles of NaCl} = \frac{1.1 \text{ g}}{58.5 \text{ g/mol}} \approx 0.0188 \text{ moles} \][/tex]
#### 4. About how many moles of [tex]\( \text{CaCl}_2 \)[/tex] are in a cc (approximately 1.3 g) of [tex]\( \text{CaCl}_2 \)[/tex]?
Using the same formula, for [tex]\( \text{CaCl}_2 \)[/tex]:
- Mass = 1.3 g
- Molar Mass = 111 g/mol
Hence,
[tex]\[ \text{Moles of CaCl}_2 = \frac{1.3 \text{ g}}{111 \text{ g/mol}} \approx 0.0117 \text{ moles} \][/tex]
### Summary of Answers:
1. The compound with the higher molecular weight is [tex]\( \text{CaCl}_2 \)[/tex].
2.
- [tex]\( \text{NaCl} \)[/tex] dissociates into 2 ions.
- [tex]\( \text{CaCl}_2 \)[/tex] dissociates into 3 ions.
3. There are approximately 0.0188 moles of [tex]\( \text{NaCl} \)[/tex] in 1 cc (1.1 g) of [tex]\( \text{NaCl} \)[/tex].
4. There are approximately 0.0117 moles of [tex]\( \text{CaCl}_2 \)[/tex] in 1 cc (1.3 g) of [tex]\( \text{CaCl}_2 \)[/tex].
#### 1. Which has a higher molecular weight: [tex]\( \text{NaCl} \)[/tex] or [tex]\( \text{CaCl}_2 \)[/tex]?
To determine the molecular weights, we sum the atomic weights of the elements in each compound:
- For [tex]\( \text{NaCl} \)[/tex]:
- Sodium (Na) has an atomic weight of 23.
- Chlorine (Cl) has an atomic weight of 35.5.
- Hence, the molecular weight of NaCl is [tex]\( 23 + 35.5 = 58.5 \)[/tex] g/mol.
- For [tex]\( \text{CaCl}_2 \)[/tex]:
- Calcium (Ca) has an atomic weight of 40.
- Chlorine (Cl) has an atomic weight of 35.5, and there are two chlorine atoms.
- Hence, the molecular weight of [tex]\( \text{CaCl}_2 \)[/tex] is [tex]\( 40 + 2 \times 35.5 = 111 \)[/tex] g/mol.
Therefore, [tex]\( \text{CaCl}_2 \)[/tex] has a higher molecular weight of 111 g/mol compared to [tex]\( \text{NaCl} \)[/tex] which has a molecular weight of 58.5 g/mol.
#### 2. How many ions does [tex]\( \text{NaCl} \)[/tex] dissociate into? How many ions does [tex]\( \text{CaCl}_2 \)[/tex] dissociate into?
- [tex]\( \text{NaCl} \)[/tex] dissociates into:
- One sodium ion (Na[tex]\(^+\)[/tex])
- One chloride ion (Cl[tex]\(^-\)[/tex])
- Total: [tex]\( 2 \)[/tex] ions.
- [tex]\( \text{CaCl}_2 \)[/tex] dissociates into:
- One calcium ion (Ca[tex]\(^2+\)[/tex])
- Two chloride ions (2Cl[tex]\(^-\)[/tex])
- Total: [tex]\( 3 \)[/tex] ions.
#### 3. About how many moles of [tex]\( \text{NaCl} \)[/tex] are in a cc (approximately 1.1 g) of [tex]\( \text{NaCl} \)[/tex]?
To find the moles of [tex]\( \text{NaCl} \)[/tex], we use the formula:
[tex]\[ \text{Moles} = \frac{\text{Mass (g)}}{\text{Molar Mass (g/mol)}} \][/tex]
For [tex]\( \text{NaCl} \)[/tex]:
- Mass = 1.1 g
- Molar Mass = 58.5 g/mol
Hence,
[tex]\[ \text{Moles of NaCl} = \frac{1.1 \text{ g}}{58.5 \text{ g/mol}} \approx 0.0188 \text{ moles} \][/tex]
#### 4. About how many moles of [tex]\( \text{CaCl}_2 \)[/tex] are in a cc (approximately 1.3 g) of [tex]\( \text{CaCl}_2 \)[/tex]?
Using the same formula, for [tex]\( \text{CaCl}_2 \)[/tex]:
- Mass = 1.3 g
- Molar Mass = 111 g/mol
Hence,
[tex]\[ \text{Moles of CaCl}_2 = \frac{1.3 \text{ g}}{111 \text{ g/mol}} \approx 0.0117 \text{ moles} \][/tex]
### Summary of Answers:
1. The compound with the higher molecular weight is [tex]\( \text{CaCl}_2 \)[/tex].
2.
- [tex]\( \text{NaCl} \)[/tex] dissociates into 2 ions.
- [tex]\( \text{CaCl}_2 \)[/tex] dissociates into 3 ions.
3. There are approximately 0.0188 moles of [tex]\( \text{NaCl} \)[/tex] in 1 cc (1.1 g) of [tex]\( \text{NaCl} \)[/tex].
4. There are approximately 0.0117 moles of [tex]\( \text{CaCl}_2 \)[/tex] in 1 cc (1.3 g) of [tex]\( \text{CaCl}_2 \)[/tex].
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.