Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Experience the ease of finding quick and accurate answers to your questions from professionals on our platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To determine the probability [tex]\(P(X < 13)\)[/tex] for a normally distributed random variable [tex]\(X\)[/tex] with a mean ([tex]\(\mu\)[/tex]) of 10 and a standard deviation ([tex]\(\sigma\)[/tex]) of 2, we'll follow these steps:
1. Identify the problem:
- Given: [tex]\(\mu = 10\)[/tex], [tex]\(\sigma = 2\)[/tex]
- Find: [tex]\(P(X < 13)\)[/tex]
2. Standardizing [tex]\(X\)[/tex]:
- To find [tex]\(P(X < 13)\)[/tex], we standardize [tex]\(X\)[/tex] by converting it to a standard normal variable [tex]\(Z\)[/tex], which has a mean of 0 and a standard deviation of 1.
- The standardized variable [tex]\(Z\)[/tex] can be calculated using the formula:
[tex]\[ Z = \frac{X - \mu}{\sigma} \][/tex]
- Here, [tex]\(X = 13\)[/tex], so:
[tex]\[ Z = \frac{13 - 10}{2} = \frac{3}{2} = 1.5 \][/tex]
3. Using the cumulative distribution function (CDF):
- The probability [tex]\(P(X < 13)\)[/tex] is equivalent to [tex]\(P(Z < 1.5)\)[/tex], where [tex]\(Z\)[/tex] follows the standard normal distribution.
- We use the cumulative distribution function (CDF) of the standard normal distribution to find [tex]\(P(Z < 1.5)\)[/tex].
4. Consult a standard normal distribution table or use a CDF calculator:
- Looking up the value for [tex]\(Z = 1.5\)[/tex] in the standard normal distribution table or using a CDF calculator, we get the probability.
5. Result:
- From the standard normal distribution table or calculator, we find that [tex]\(P(Z < 1.5) \approx 0.93319\)[/tex].
Therefore, the probability [tex]\(P(X < 13)\)[/tex] for a normally distributed random variable [tex]\(X\)[/tex] with mean 10 and standard deviation 2 is approximately [tex]\(0.93319\)[/tex].
1. Identify the problem:
- Given: [tex]\(\mu = 10\)[/tex], [tex]\(\sigma = 2\)[/tex]
- Find: [tex]\(P(X < 13)\)[/tex]
2. Standardizing [tex]\(X\)[/tex]:
- To find [tex]\(P(X < 13)\)[/tex], we standardize [tex]\(X\)[/tex] by converting it to a standard normal variable [tex]\(Z\)[/tex], which has a mean of 0 and a standard deviation of 1.
- The standardized variable [tex]\(Z\)[/tex] can be calculated using the formula:
[tex]\[ Z = \frac{X - \mu}{\sigma} \][/tex]
- Here, [tex]\(X = 13\)[/tex], so:
[tex]\[ Z = \frac{13 - 10}{2} = \frac{3}{2} = 1.5 \][/tex]
3. Using the cumulative distribution function (CDF):
- The probability [tex]\(P(X < 13)\)[/tex] is equivalent to [tex]\(P(Z < 1.5)\)[/tex], where [tex]\(Z\)[/tex] follows the standard normal distribution.
- We use the cumulative distribution function (CDF) of the standard normal distribution to find [tex]\(P(Z < 1.5)\)[/tex].
4. Consult a standard normal distribution table or use a CDF calculator:
- Looking up the value for [tex]\(Z = 1.5\)[/tex] in the standard normal distribution table or using a CDF calculator, we get the probability.
5. Result:
- From the standard normal distribution table or calculator, we find that [tex]\(P(Z < 1.5) \approx 0.93319\)[/tex].
Therefore, the probability [tex]\(P(X < 13)\)[/tex] for a normally distributed random variable [tex]\(X\)[/tex] with mean 10 and standard deviation 2 is approximately [tex]\(0.93319\)[/tex].
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.