Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Discover comprehensive solutions to your questions from a wide network of experts on our user-friendly platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.

If [tex]\( x=10^a \)[/tex] and [tex]\( y=10^b \)[/tex], and [tex]\( x^b y^a=100 \)[/tex], what is the value of [tex]\( ab \)[/tex]?

A. 1
B. [tex]\(\sqrt{2}\)[/tex]
C. 2
D. 10


Sagot :

Given the problem [tex]\( x = 10^a \)[/tex], [tex]\( y = 10^b \)[/tex], and [tex]\( x^b y^a = 100 \)[/tex], we want to find the value of [tex]\( ab \)[/tex].

First, let's substitute [tex]\( x \)[/tex] and [tex]\( y \)[/tex] into the equation [tex]\( x^b y^a = 100 \)[/tex]:

[tex]\[ (10^a)^b (10^b)^a = 100 \][/tex]

We can simplify the left-hand side of the equation step by step:

[tex]\[ (10^a)^b = 10^{ab} \][/tex]
[tex]\[ (10^b)^a = 10^{ab} \][/tex]

Therefore, substituting these back, we have:

[tex]\[ 10^{ab} \cdot 10^{ab} = 100 \][/tex]

Combining the exponents on the left-hand side:

[tex]\[ 10^{2ab} = 100 \][/tex]

We know that [tex]\( 100 \)[/tex] can be written as [tex]\( 10^2 \)[/tex]:

[tex]\[ 10^{2ab} = 10^2 \][/tex]

Since the bases are the same, we can equate the exponents:

[tex]\[ 2ab = 2 \][/tex]

To solve for [tex]\( ab \)[/tex], we divide both sides by 2:

[tex]\[ ab = 1 \][/tex]

Therefore, the value of [tex]\( ab \)[/tex] is:

[tex]\[ \boxed{1} \][/tex]