Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Get accurate and detailed answers to your questions from a dedicated community of experts on our Q&A platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.

Which is equivalent to [tex] (\sqrt[3]{125})^x [/tex]?

A. [tex] 125^{\frac{1}{3} x} [/tex]

B. [tex] 125^{\frac{1}{3 x}} [/tex]

C. [tex] 125^{3 x} [/tex]

D. [tex] 125^{\left(\frac{1}{3}\right)^x} [/tex]


Sagot :

To determine the expression equivalent to [tex]\((\sqrt[3]{125})^x\)[/tex], let's break down the problem step by step.

1. Understanding the Radical Expression:
- The expression [tex]\(\sqrt[3]{125}\)[/tex] represents the cube root of 125.

2. Rewriting the Cube Root in Exponential Form:
- We know that a cube root can be expressed as an exponent of [tex]\(\frac{1}{3}\)[/tex]. Therefore, [tex]\(\sqrt[3]{125}\)[/tex] can be written as [tex]\(125^{\frac{1}{3}}\)[/tex].

3. Raising to the Power [tex]\(x\)[/tex]:
- We need to raise this expression to the power [tex]\(x\)[/tex], so [tex]\((\sqrt[3]{125})^x\)[/tex] can be written as [tex]\((125^{\frac{1}{3}})^x\)[/tex].

4. Applying the Power Rule:
- According to the power of a power property in exponents, [tex]\((a^m)^n = a^{m \cdot n}\)[/tex]. Here, [tex]\(a\)[/tex] is 125, [tex]\(m\)[/tex] is [tex]\(\frac{1}{3}\)[/tex], and [tex]\(n\)[/tex] is [tex]\(x\)[/tex].
- Therefore, [tex]\((125^{\frac{1}{3}})^x\)[/tex] simplifies to [tex]\(125^{\frac{1}{3} \cdot x}\)[/tex], or [tex]\(125^{\frac{1}{3} x}\)[/tex].

So the expression [tex]\((\sqrt[3]{125})^x\)[/tex] is equivalent to [tex]\(125^{\frac{1}{3} x}\)[/tex].

The correct answer is:

[tex]\[ 125^{\frac{1}{3} x} \][/tex]
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.