Welcome to Westonci.ca, where you can find answers to all your questions from a community of experienced professionals. Ask your questions and receive accurate answers from professionals with extensive experience in various fields on our platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To determine why the triangles are similar, allowing you to write the proportions [tex]\(\frac{c}{a} = \frac{a}{f}\)[/tex] and [tex]\(\frac{c}{b} = \frac{b}{e}\)[/tex], let's examine the triangles involved.
Consider a right triangle [tex]\( \triangle ABC \)[/tex] with [tex]\( \angle C = 90^\circ \)[/tex]. If you draw the altitude from [tex]\( C \)[/tex] perpendicular to [tex]\( AB \)[/tex], this altitude will create two smaller right triangles, [tex]\( \triangle ACD \)[/tex] and [tex]\( \triangle CBD \)[/tex], where [tex]\( D \)[/tex] is the point where the altitude meets [tex]\( AB \)[/tex].
The resulting triangles, [tex]\( \triangle ACD \)[/tex] and [tex]\( \triangle CBD \)[/tex], are similar to the original triangle [tex]\( \triangle ABC \)[/tex] because of the Right Triangle Altitude Theorem, which states:
- The altitude drawn to the hypotenuse of a right triangle creates two triangles that are similar to the original triangle and to each other.
Therefore, we can state that the triangles are similar based on the Right Triangle Altitude Theorem.
In other words, the similarity allows us to establish the proportions:
- For [tex]\(\triangle ACD\)[/tex] and [tex]\(\triangle ABC\)[/tex]:
[tex]\[ \frac{AC}{AB} = \frac{AD}{AC} \implies \frac{a}{c} = \frac{f}{a} \implies \frac{c}{a} = \frac{a}{f} \][/tex]
- For [tex]\(\triangle CBD\)[/tex] and [tex]\(\triangle ABC\)[/tex]:
[tex]\[ \frac{BC}{AB} = \frac{BD}{BC} \implies \frac{b}{c} = \frac{e}{b} \implies \frac{c}{b} = \frac{b}{e} \][/tex]
Thus, the correct theorem that justifies the similarity of these triangles and the proportions [tex]\(\frac{c}{a} = \frac{a}{f}\)[/tex] and [tex]\(\frac{c}{b} = \frac{b}{e}\)[/tex] is:
The Right Triangle Altitude Theorem
Consider a right triangle [tex]\( \triangle ABC \)[/tex] with [tex]\( \angle C = 90^\circ \)[/tex]. If you draw the altitude from [tex]\( C \)[/tex] perpendicular to [tex]\( AB \)[/tex], this altitude will create two smaller right triangles, [tex]\( \triangle ACD \)[/tex] and [tex]\( \triangle CBD \)[/tex], where [tex]\( D \)[/tex] is the point where the altitude meets [tex]\( AB \)[/tex].
The resulting triangles, [tex]\( \triangle ACD \)[/tex] and [tex]\( \triangle CBD \)[/tex], are similar to the original triangle [tex]\( \triangle ABC \)[/tex] because of the Right Triangle Altitude Theorem, which states:
- The altitude drawn to the hypotenuse of a right triangle creates two triangles that are similar to the original triangle and to each other.
Therefore, we can state that the triangles are similar based on the Right Triangle Altitude Theorem.
In other words, the similarity allows us to establish the proportions:
- For [tex]\(\triangle ACD\)[/tex] and [tex]\(\triangle ABC\)[/tex]:
[tex]\[ \frac{AC}{AB} = \frac{AD}{AC} \implies \frac{a}{c} = \frac{f}{a} \implies \frac{c}{a} = \frac{a}{f} \][/tex]
- For [tex]\(\triangle CBD\)[/tex] and [tex]\(\triangle ABC\)[/tex]:
[tex]\[ \frac{BC}{AB} = \frac{BD}{BC} \implies \frac{b}{c} = \frac{e}{b} \implies \frac{c}{b} = \frac{b}{e} \][/tex]
Thus, the correct theorem that justifies the similarity of these triangles and the proportions [tex]\(\frac{c}{a} = \frac{a}{f}\)[/tex] and [tex]\(\frac{c}{b} = \frac{b}{e}\)[/tex] is:
The Right Triangle Altitude Theorem
We appreciate your time. Please come back anytime for the latest information and answers to your questions. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.