Welcome to Westonci.ca, the Q&A platform where your questions are met with detailed answers from experienced experts. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To determine why the triangles are similar, allowing you to write the proportions [tex]\(\frac{c}{a} = \frac{a}{f}\)[/tex] and [tex]\(\frac{c}{b} = \frac{b}{e}\)[/tex], let's examine the triangles involved.
Consider a right triangle [tex]\( \triangle ABC \)[/tex] with [tex]\( \angle C = 90^\circ \)[/tex]. If you draw the altitude from [tex]\( C \)[/tex] perpendicular to [tex]\( AB \)[/tex], this altitude will create two smaller right triangles, [tex]\( \triangle ACD \)[/tex] and [tex]\( \triangle CBD \)[/tex], where [tex]\( D \)[/tex] is the point where the altitude meets [tex]\( AB \)[/tex].
The resulting triangles, [tex]\( \triangle ACD \)[/tex] and [tex]\( \triangle CBD \)[/tex], are similar to the original triangle [tex]\( \triangle ABC \)[/tex] because of the Right Triangle Altitude Theorem, which states:
- The altitude drawn to the hypotenuse of a right triangle creates two triangles that are similar to the original triangle and to each other.
Therefore, we can state that the triangles are similar based on the Right Triangle Altitude Theorem.
In other words, the similarity allows us to establish the proportions:
- For [tex]\(\triangle ACD\)[/tex] and [tex]\(\triangle ABC\)[/tex]:
[tex]\[ \frac{AC}{AB} = \frac{AD}{AC} \implies \frac{a}{c} = \frac{f}{a} \implies \frac{c}{a} = \frac{a}{f} \][/tex]
- For [tex]\(\triangle CBD\)[/tex] and [tex]\(\triangle ABC\)[/tex]:
[tex]\[ \frac{BC}{AB} = \frac{BD}{BC} \implies \frac{b}{c} = \frac{e}{b} \implies \frac{c}{b} = \frac{b}{e} \][/tex]
Thus, the correct theorem that justifies the similarity of these triangles and the proportions [tex]\(\frac{c}{a} = \frac{a}{f}\)[/tex] and [tex]\(\frac{c}{b} = \frac{b}{e}\)[/tex] is:
The Right Triangle Altitude Theorem
Consider a right triangle [tex]\( \triangle ABC \)[/tex] with [tex]\( \angle C = 90^\circ \)[/tex]. If you draw the altitude from [tex]\( C \)[/tex] perpendicular to [tex]\( AB \)[/tex], this altitude will create two smaller right triangles, [tex]\( \triangle ACD \)[/tex] and [tex]\( \triangle CBD \)[/tex], where [tex]\( D \)[/tex] is the point where the altitude meets [tex]\( AB \)[/tex].
The resulting triangles, [tex]\( \triangle ACD \)[/tex] and [tex]\( \triangle CBD \)[/tex], are similar to the original triangle [tex]\( \triangle ABC \)[/tex] because of the Right Triangle Altitude Theorem, which states:
- The altitude drawn to the hypotenuse of a right triangle creates two triangles that are similar to the original triangle and to each other.
Therefore, we can state that the triangles are similar based on the Right Triangle Altitude Theorem.
In other words, the similarity allows us to establish the proportions:
- For [tex]\(\triangle ACD\)[/tex] and [tex]\(\triangle ABC\)[/tex]:
[tex]\[ \frac{AC}{AB} = \frac{AD}{AC} \implies \frac{a}{c} = \frac{f}{a} \implies \frac{c}{a} = \frac{a}{f} \][/tex]
- For [tex]\(\triangle CBD\)[/tex] and [tex]\(\triangle ABC\)[/tex]:
[tex]\[ \frac{BC}{AB} = \frac{BD}{BC} \implies \frac{b}{c} = \frac{e}{b} \implies \frac{c}{b} = \frac{b}{e} \][/tex]
Thus, the correct theorem that justifies the similarity of these triangles and the proportions [tex]\(\frac{c}{a} = \frac{a}{f}\)[/tex] and [tex]\(\frac{c}{b} = \frac{b}{e}\)[/tex] is:
The Right Triangle Altitude Theorem
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.