At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
Let's address each part of the problem step-by-step.
Given:
- [tex]\( X \)[/tex] is normally distributed with a mean ([tex]\( \mu \)[/tex]) of 10 and a standard deviation ([tex]\( \sigma \)[/tex]) of 2.
### Part (a)
Problem:
[tex]\[ P(X > x) = 0.5 \][/tex]
Solution:
Since the total probability is 1, [tex]\( P(X \leq x) = 1 - P(X > x) = 0.5 \)[/tex]. Given that the 50th percentile (or median) of a normal distribution is the mean:
[tex]\[ x = \mu = 10 \][/tex]
### Part (b)
Problem:
[tex]\[ P(X > x) = 0.95 \][/tex]
Solution:
First, we convert this to less than form:
[tex]\[ P(X \leq x) = 1 - P(X > x) = 1 - 0.95 = 0.05 \][/tex]
We find the z-score for the 5th percentile (0.05). This z-score converts to:
[tex]\[ z \approx -1.645 \][/tex]
Then, we use the formula to convert the z-score to [tex]\( x \)[/tex]:
[tex]\[ x = \mu + z \cdot \sigma = 10 + (-1.645) \cdot 2 = 6.71 \][/tex]
### Part (c)
Problem:
[tex]\[ P(x < X < 10) = 0.2 \][/tex]
Solution:
We know:
[tex]\[ P(X < 10) = 0.5 \][/tex]
Thus:
[tex]\[ P(X < x) = 0.5 - 0.2 = 0.3 \][/tex]
We find the z-score for the 30th percentile (0.3). This z-score converts to:
[tex]\[ z \approx -0.524 \][/tex]
Then, we use the formula to convert the z-score to [tex]\( x \)[/tex]:
[tex]\[ x = \mu + z \cdot \sigma = 10 + (-0.524) \cdot 2 = 8.95 \][/tex]
### Part (d)
Problem:
[tex]\[ P(-x < X - 10 < x) = 0.95 \][/tex]
Solution:
This can be taken as:
[tex]\[ P(10 - x < X < 10 + x) = 0.95 \][/tex]
This means the probability between [tex]\( 10 - x \)[/tex] and [tex]\( 10 + x \)[/tex] is 0.95. We look for the critical value, which is symmetrically distributed around the mean. The z-scores for a 95% confidence interval are:
[tex]\[ \pm 1.96 \][/tex]
Then, we use the formula to convert the z-score to [tex]\( x \)[/tex]:
[tex]\[ x = z \cdot \sigma = 1.96 \cdot 2 \approx 3.92 \][/tex]
### Part (e)
Problem:
[tex]\[ P(-x < X - 10 < x) = 0.99 \][/tex]
Solution:
This can be taken as:
[tex]\[ P(10 - x < X < 10 + x) = 0.99 \][/tex]
This means the probability between [tex]\( 10 - x \)[/tex] and [tex]\( 10 + x \)[/tex] is 0.99. We look for the critical value, which is symmetrically distributed around the mean. The z-scores for a 99% confidence interval are:
[tex]\[ \approx \pm 2.576 \][/tex]
Then, we use the formula to convert the z-score to [tex]\( x \)[/tex]:
[tex]\[ x = z \cdot \sigma = 2.576 \cdot 2 \approx 5.15 \][/tex]
### Summary of Answers:
- Part (a): [tex]\( x = 10 \)[/tex]
- Part (b): [tex]\( x = 6.71 \)[/tex]
- Part (c): [tex]\( x = 8.95 \)[/tex]
- Part (d): [tex]\( x = 3.92 \)[/tex]
- Part (e): [tex]\( x = 5.15 \)[/tex]
Given:
- [tex]\( X \)[/tex] is normally distributed with a mean ([tex]\( \mu \)[/tex]) of 10 and a standard deviation ([tex]\( \sigma \)[/tex]) of 2.
### Part (a)
Problem:
[tex]\[ P(X > x) = 0.5 \][/tex]
Solution:
Since the total probability is 1, [tex]\( P(X \leq x) = 1 - P(X > x) = 0.5 \)[/tex]. Given that the 50th percentile (or median) of a normal distribution is the mean:
[tex]\[ x = \mu = 10 \][/tex]
### Part (b)
Problem:
[tex]\[ P(X > x) = 0.95 \][/tex]
Solution:
First, we convert this to less than form:
[tex]\[ P(X \leq x) = 1 - P(X > x) = 1 - 0.95 = 0.05 \][/tex]
We find the z-score for the 5th percentile (0.05). This z-score converts to:
[tex]\[ z \approx -1.645 \][/tex]
Then, we use the formula to convert the z-score to [tex]\( x \)[/tex]:
[tex]\[ x = \mu + z \cdot \sigma = 10 + (-1.645) \cdot 2 = 6.71 \][/tex]
### Part (c)
Problem:
[tex]\[ P(x < X < 10) = 0.2 \][/tex]
Solution:
We know:
[tex]\[ P(X < 10) = 0.5 \][/tex]
Thus:
[tex]\[ P(X < x) = 0.5 - 0.2 = 0.3 \][/tex]
We find the z-score for the 30th percentile (0.3). This z-score converts to:
[tex]\[ z \approx -0.524 \][/tex]
Then, we use the formula to convert the z-score to [tex]\( x \)[/tex]:
[tex]\[ x = \mu + z \cdot \sigma = 10 + (-0.524) \cdot 2 = 8.95 \][/tex]
### Part (d)
Problem:
[tex]\[ P(-x < X - 10 < x) = 0.95 \][/tex]
Solution:
This can be taken as:
[tex]\[ P(10 - x < X < 10 + x) = 0.95 \][/tex]
This means the probability between [tex]\( 10 - x \)[/tex] and [tex]\( 10 + x \)[/tex] is 0.95. We look for the critical value, which is symmetrically distributed around the mean. The z-scores for a 95% confidence interval are:
[tex]\[ \pm 1.96 \][/tex]
Then, we use the formula to convert the z-score to [tex]\( x \)[/tex]:
[tex]\[ x = z \cdot \sigma = 1.96 \cdot 2 \approx 3.92 \][/tex]
### Part (e)
Problem:
[tex]\[ P(-x < X - 10 < x) = 0.99 \][/tex]
Solution:
This can be taken as:
[tex]\[ P(10 - x < X < 10 + x) = 0.99 \][/tex]
This means the probability between [tex]\( 10 - x \)[/tex] and [tex]\( 10 + x \)[/tex] is 0.99. We look for the critical value, which is symmetrically distributed around the mean. The z-scores for a 99% confidence interval are:
[tex]\[ \approx \pm 2.576 \][/tex]
Then, we use the formula to convert the z-score to [tex]\( x \)[/tex]:
[tex]\[ x = z \cdot \sigma = 2.576 \cdot 2 \approx 5.15 \][/tex]
### Summary of Answers:
- Part (a): [tex]\( x = 10 \)[/tex]
- Part (b): [tex]\( x = 6.71 \)[/tex]
- Part (c): [tex]\( x = 8.95 \)[/tex]
- Part (d): [tex]\( x = 3.92 \)[/tex]
- Part (e): [tex]\( x = 5.15 \)[/tex]
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.