Looking for trustworthy answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Get quick and reliable solutions to your questions from a community of experienced experts on our platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To find the zeros of the function [tex]\( f(x) = \frac{x^2 + x - 6}{x^2 - x - 6} \)[/tex], we look for the points where the function equals zero, i.e., the numerator equals zero while the denominator does not equal zero.
Step-by-step approach:
1. Identify the numerator and denominator:
The function is given by
[tex]\[ f(x) = \frac{x^2 + x - 6}{x^2 - x - 6} \][/tex]
where [tex]\( x^2 + x - 6 \)[/tex] is the numerator, and [tex]\( x^2 - x - 6 \)[/tex] is the denominator.
2. Find the zeros of the numerator:
To find where [tex]\( f(x) \)[/tex] is zero, set the numerator equal to zero:
[tex]\[ x^2 + x - 6 = 0 \][/tex]
Factor the quadratic equation:
[tex]\[ x^2 + x - 6 = (x + 3)(x - 2) = 0 \][/tex]
Solve for [tex]\( x \)[/tex]:
[tex]\[ x + 3 = 0 \quad \text{or} \quad x - 2 = 0 \][/tex]
Therefore, the solutions are:
[tex]\[ x = -3 \quad \text{and} \quad x = 2 \][/tex]
These are potential zeros of [tex]\( f(x) \)[/tex].
3. Check the points where the denominator is zero:
The function is undefined where the denominator equals zero:
[tex]\[ x^2 - x - 6 = 0 \][/tex]
Factor the quadratic equation:
[tex]\[ x^2 - x - 6 = (x - 3)(x + 2) = 0 \][/tex]
Solve for [tex]\( x \)[/tex]:
[tex]\[ x - 3 = 0 \quad \text{or} \quad x + 2 = 0 \][/tex]
Therefore, the solutions are:
[tex]\[ x = 3 \quad \text{and} \quad x = -2 \][/tex]
These are points where the function is not defined.
4. Confirm the zeros of the function:
From the numerator, we have potential zeros [tex]\( x = -3 \)[/tex] and [tex]\( x = 2 \)[/tex].
From the denominator, we identify that [tex]\( f(x) \)[/tex] is undefined at [tex]\( x = -2 \)[/tex] and [tex]\( x = 3 \)[/tex].
5. Validate the zeros:
Since [tex]\( -3 \)[/tex] and [tex]\( 2 \)[/tex] do not make the denominator zero, they are indeed the zeros of the function [tex]\( f(x) \)[/tex].
Hence, the zeros of the function [tex]\( f(x) \)[/tex] are [tex]\(-3\)[/tex] and [tex]\(2\)[/tex].
The correct answer is:
D. [tex]\(-3, 2\)[/tex]
Step-by-step approach:
1. Identify the numerator and denominator:
The function is given by
[tex]\[ f(x) = \frac{x^2 + x - 6}{x^2 - x - 6} \][/tex]
where [tex]\( x^2 + x - 6 \)[/tex] is the numerator, and [tex]\( x^2 - x - 6 \)[/tex] is the denominator.
2. Find the zeros of the numerator:
To find where [tex]\( f(x) \)[/tex] is zero, set the numerator equal to zero:
[tex]\[ x^2 + x - 6 = 0 \][/tex]
Factor the quadratic equation:
[tex]\[ x^2 + x - 6 = (x + 3)(x - 2) = 0 \][/tex]
Solve for [tex]\( x \)[/tex]:
[tex]\[ x + 3 = 0 \quad \text{or} \quad x - 2 = 0 \][/tex]
Therefore, the solutions are:
[tex]\[ x = -3 \quad \text{and} \quad x = 2 \][/tex]
These are potential zeros of [tex]\( f(x) \)[/tex].
3. Check the points where the denominator is zero:
The function is undefined where the denominator equals zero:
[tex]\[ x^2 - x - 6 = 0 \][/tex]
Factor the quadratic equation:
[tex]\[ x^2 - x - 6 = (x - 3)(x + 2) = 0 \][/tex]
Solve for [tex]\( x \)[/tex]:
[tex]\[ x - 3 = 0 \quad \text{or} \quad x + 2 = 0 \][/tex]
Therefore, the solutions are:
[tex]\[ x = 3 \quad \text{and} \quad x = -2 \][/tex]
These are points where the function is not defined.
4. Confirm the zeros of the function:
From the numerator, we have potential zeros [tex]\( x = -3 \)[/tex] and [tex]\( x = 2 \)[/tex].
From the denominator, we identify that [tex]\( f(x) \)[/tex] is undefined at [tex]\( x = -2 \)[/tex] and [tex]\( x = 3 \)[/tex].
5. Validate the zeros:
Since [tex]\( -3 \)[/tex] and [tex]\( 2 \)[/tex] do not make the denominator zero, they are indeed the zeros of the function [tex]\( f(x) \)[/tex].
Hence, the zeros of the function [tex]\( f(x) \)[/tex] are [tex]\(-3\)[/tex] and [tex]\(2\)[/tex].
The correct answer is:
D. [tex]\(-3, 2\)[/tex]
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.