Westonci.ca is the Q&A platform that connects you with experts who provide accurate and detailed answers. Explore thousands of questions and answers from knowledgeable experts in various fields on our Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To solve the inequality [tex]\(\frac{5 - 2x}{3} \leq \frac{x}{6} - 5\)[/tex], we can begin by eliminating the fractions through multiplication. Here is a step-by-step solution:
1. Identify and Simplify the Inequality:
The given inequality is:
[tex]\[ \frac{5 - 2x}{3} \leq \frac{x}{6} - 5 \][/tex]
2. Eliminate the Fractions:
We can get rid of the denominators by multiplying all terms by 6, the least common multiple of 3 and 6:
[tex]\[ 6 \left( \frac{5 - 2x}{3} \right) \leq 6 \left( \frac{x}{6} \right) - 6 \cdot 5 \][/tex]
Simplifying the expressions, we get:
[tex]\[ 2(5 - 2x) \leq x - 30 \][/tex]
[tex]\[ 10 - 4x \leq x - 30 \][/tex]
3. Isolate the Variable [tex]\(x\)[/tex]:
Combine like terms by moving all terms involving [tex]\(x\)[/tex] to one side and the constants to the other side:
[tex]\[ 10 - 4x \leq x - 30 \][/tex]
Add [tex]\(4x\)[/tex] to both sides:
[tex]\[ 10 \leq x + 4x - 30 \][/tex]
[tex]\[ 10 \leq 5x - 30 \][/tex]
Add 30 to both sides:
[tex]\[ 40 \leq 5x \][/tex]
4. Solve for [tex]\(x\)[/tex]:
Divide both sides by 5 to isolate [tex]\(x\)[/tex]:
[tex]\[ \frac{40}{5} \leq x \][/tex]
[tex]\[ 8 \leq x \][/tex]
This can be written as:
[tex]\[ x \geq 8 \][/tex]
Therefore, the solution to the inequality [tex]\(\frac{(5 - 2x)}{3} \leq \frac{x}{6} - 5\)[/tex] is:
[tex]\(\boxed{x \geq 8}\)[/tex]
So, the correct answer is:
(B) [tex]\(x \leq 8\)[/tex]
1. Identify and Simplify the Inequality:
The given inequality is:
[tex]\[ \frac{5 - 2x}{3} \leq \frac{x}{6} - 5 \][/tex]
2. Eliminate the Fractions:
We can get rid of the denominators by multiplying all terms by 6, the least common multiple of 3 and 6:
[tex]\[ 6 \left( \frac{5 - 2x}{3} \right) \leq 6 \left( \frac{x}{6} \right) - 6 \cdot 5 \][/tex]
Simplifying the expressions, we get:
[tex]\[ 2(5 - 2x) \leq x - 30 \][/tex]
[tex]\[ 10 - 4x \leq x - 30 \][/tex]
3. Isolate the Variable [tex]\(x\)[/tex]:
Combine like terms by moving all terms involving [tex]\(x\)[/tex] to one side and the constants to the other side:
[tex]\[ 10 - 4x \leq x - 30 \][/tex]
Add [tex]\(4x\)[/tex] to both sides:
[tex]\[ 10 \leq x + 4x - 30 \][/tex]
[tex]\[ 10 \leq 5x - 30 \][/tex]
Add 30 to both sides:
[tex]\[ 40 \leq 5x \][/tex]
4. Solve for [tex]\(x\)[/tex]:
Divide both sides by 5 to isolate [tex]\(x\)[/tex]:
[tex]\[ \frac{40}{5} \leq x \][/tex]
[tex]\[ 8 \leq x \][/tex]
This can be written as:
[tex]\[ x \geq 8 \][/tex]
Therefore, the solution to the inequality [tex]\(\frac{(5 - 2x)}{3} \leq \frac{x}{6} - 5\)[/tex] is:
[tex]\(\boxed{x \geq 8}\)[/tex]
So, the correct answer is:
(B) [tex]\(x \leq 8\)[/tex]
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.