Find the best answers to your questions at Westonci.ca, where experts and enthusiasts provide accurate, reliable information. Explore thousands of questions and answers from a knowledgeable community of experts ready to help you find solutions. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To solve the inequality [tex]\(\frac{5 - 2x}{3} \leq \frac{x}{6} - 5\)[/tex], we can begin by eliminating the fractions through multiplication. Here is a step-by-step solution:
1. Identify and Simplify the Inequality:
The given inequality is:
[tex]\[ \frac{5 - 2x}{3} \leq \frac{x}{6} - 5 \][/tex]
2. Eliminate the Fractions:
We can get rid of the denominators by multiplying all terms by 6, the least common multiple of 3 and 6:
[tex]\[ 6 \left( \frac{5 - 2x}{3} \right) \leq 6 \left( \frac{x}{6} \right) - 6 \cdot 5 \][/tex]
Simplifying the expressions, we get:
[tex]\[ 2(5 - 2x) \leq x - 30 \][/tex]
[tex]\[ 10 - 4x \leq x - 30 \][/tex]
3. Isolate the Variable [tex]\(x\)[/tex]:
Combine like terms by moving all terms involving [tex]\(x\)[/tex] to one side and the constants to the other side:
[tex]\[ 10 - 4x \leq x - 30 \][/tex]
Add [tex]\(4x\)[/tex] to both sides:
[tex]\[ 10 \leq x + 4x - 30 \][/tex]
[tex]\[ 10 \leq 5x - 30 \][/tex]
Add 30 to both sides:
[tex]\[ 40 \leq 5x \][/tex]
4. Solve for [tex]\(x\)[/tex]:
Divide both sides by 5 to isolate [tex]\(x\)[/tex]:
[tex]\[ \frac{40}{5} \leq x \][/tex]
[tex]\[ 8 \leq x \][/tex]
This can be written as:
[tex]\[ x \geq 8 \][/tex]
Therefore, the solution to the inequality [tex]\(\frac{(5 - 2x)}{3} \leq \frac{x}{6} - 5\)[/tex] is:
[tex]\(\boxed{x \geq 8}\)[/tex]
So, the correct answer is:
(B) [tex]\(x \leq 8\)[/tex]
1. Identify and Simplify the Inequality:
The given inequality is:
[tex]\[ \frac{5 - 2x}{3} \leq \frac{x}{6} - 5 \][/tex]
2. Eliminate the Fractions:
We can get rid of the denominators by multiplying all terms by 6, the least common multiple of 3 and 6:
[tex]\[ 6 \left( \frac{5 - 2x}{3} \right) \leq 6 \left( \frac{x}{6} \right) - 6 \cdot 5 \][/tex]
Simplifying the expressions, we get:
[tex]\[ 2(5 - 2x) \leq x - 30 \][/tex]
[tex]\[ 10 - 4x \leq x - 30 \][/tex]
3. Isolate the Variable [tex]\(x\)[/tex]:
Combine like terms by moving all terms involving [tex]\(x\)[/tex] to one side and the constants to the other side:
[tex]\[ 10 - 4x \leq x - 30 \][/tex]
Add [tex]\(4x\)[/tex] to both sides:
[tex]\[ 10 \leq x + 4x - 30 \][/tex]
[tex]\[ 10 \leq 5x - 30 \][/tex]
Add 30 to both sides:
[tex]\[ 40 \leq 5x \][/tex]
4. Solve for [tex]\(x\)[/tex]:
Divide both sides by 5 to isolate [tex]\(x\)[/tex]:
[tex]\[ \frac{40}{5} \leq x \][/tex]
[tex]\[ 8 \leq x \][/tex]
This can be written as:
[tex]\[ x \geq 8 \][/tex]
Therefore, the solution to the inequality [tex]\(\frac{(5 - 2x)}{3} \leq \frac{x}{6} - 5\)[/tex] is:
[tex]\(\boxed{x \geq 8}\)[/tex]
So, the correct answer is:
(B) [tex]\(x \leq 8\)[/tex]
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.