Welcome to Westonci.ca, where finding answers to your questions is made simple by our community of experts. Explore in-depth answers to your questions from a knowledgeable community of experts across different fields. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
Given the expression [tex]\(\frac{2}{x^0 - y^3}\)[/tex], let's begin by simplifying it:
1. Simplify the base expression:
[tex]\[ x^0 = 1 \quad \text{for any } x \][/tex]
Therefore,
[tex]\[ \frac{2}{x^0 - y^3} = \frac{2}{1 - y^3} \][/tex]
Now, we will check each given expression to see if they are equivalent to [tex]\(\frac{2}{1 - y^3}\)[/tex].
2. Check each given expression:
A. [tex]\(\frac{1}{\left(x^2 - y^2\right)} \cdot \frac{1}{\left(x^2 + y^2\right)}\)[/tex]
This can be simplified to:
[tex]\[ \frac{1}{(x^2 - y^2)(x^2 + y^2)} \][/tex]
Simplifying further,
[tex]\[ (x^2 - y^2)(x^2 + y^2) = x^4 - y^4 \][/tex]
Therefore,
[tex]\[ \frac{1}{(x^2 - y^2)(x^2 + y^2)} = \frac{1}{x^4 - y^4} \][/tex]
This is not equivalent to [tex]\(\frac{2}{1 - y^3}\)[/tex].
B. [tex]\(\frac{2}{(x^2)^2 - (y^2)^1}\)[/tex]
Simplify the expression in the denominator:
[tex]\[ (x^2)^2 = x^4 \quad \text{and} \quad (y^2)^1 = y^2 \][/tex]
Hence,
[tex]\[ \frac{2}{x^4 - y^2} \][/tex]
This is not equivalent to [tex]\(\frac{2}{1 - y^3}\)[/tex].
C. [tex]\(\frac{2}{x^2 - y^3} \cdot \frac{1}{x^3 - y^2}\)[/tex]
This can be written as:
[tex]\[ \frac{2}{(x^2 - y^3)(x^3 - y^2)} \][/tex]
This does not simplify in any way that is equivalent to [tex]\(\frac{2}{1 - y^3}\)[/tex].
D. [tex]\(\frac{2}{x^3 - y^3} \cdot \frac{1}{x^3 + y^3}\)[/tex]
This can be written as:
[tex]\[ \frac{2}{(x^3 - y^3)(x^3 + y^3)} \][/tex]
Simplifying the denominator,
[tex]\[ (x^3 - y^3)(x^3 + y^3) = x^6 - y^6 \][/tex]
Hence,
[tex]\[ \frac{2}{x^6 - y^6} \][/tex]
This is also not equivalent to [tex]\(\frac{2}{1 - y^3}\)[/tex].
3. Conclusion:
None of the provided expressions [tex]\(A, B, C,\)[/tex] or [tex]\(D\)[/tex] are equivalent to [tex]\(\frac{2}{1 - y^3}\)[/tex]. Therefore, no expressions apply.
1. Simplify the base expression:
[tex]\[ x^0 = 1 \quad \text{for any } x \][/tex]
Therefore,
[tex]\[ \frac{2}{x^0 - y^3} = \frac{2}{1 - y^3} \][/tex]
Now, we will check each given expression to see if they are equivalent to [tex]\(\frac{2}{1 - y^3}\)[/tex].
2. Check each given expression:
A. [tex]\(\frac{1}{\left(x^2 - y^2\right)} \cdot \frac{1}{\left(x^2 + y^2\right)}\)[/tex]
This can be simplified to:
[tex]\[ \frac{1}{(x^2 - y^2)(x^2 + y^2)} \][/tex]
Simplifying further,
[tex]\[ (x^2 - y^2)(x^2 + y^2) = x^4 - y^4 \][/tex]
Therefore,
[tex]\[ \frac{1}{(x^2 - y^2)(x^2 + y^2)} = \frac{1}{x^4 - y^4} \][/tex]
This is not equivalent to [tex]\(\frac{2}{1 - y^3}\)[/tex].
B. [tex]\(\frac{2}{(x^2)^2 - (y^2)^1}\)[/tex]
Simplify the expression in the denominator:
[tex]\[ (x^2)^2 = x^4 \quad \text{and} \quad (y^2)^1 = y^2 \][/tex]
Hence,
[tex]\[ \frac{2}{x^4 - y^2} \][/tex]
This is not equivalent to [tex]\(\frac{2}{1 - y^3}\)[/tex].
C. [tex]\(\frac{2}{x^2 - y^3} \cdot \frac{1}{x^3 - y^2}\)[/tex]
This can be written as:
[tex]\[ \frac{2}{(x^2 - y^3)(x^3 - y^2)} \][/tex]
This does not simplify in any way that is equivalent to [tex]\(\frac{2}{1 - y^3}\)[/tex].
D. [tex]\(\frac{2}{x^3 - y^3} \cdot \frac{1}{x^3 + y^3}\)[/tex]
This can be written as:
[tex]\[ \frac{2}{(x^3 - y^3)(x^3 + y^3)} \][/tex]
Simplifying the denominator,
[tex]\[ (x^3 - y^3)(x^3 + y^3) = x^6 - y^6 \][/tex]
Hence,
[tex]\[ \frac{2}{x^6 - y^6} \][/tex]
This is also not equivalent to [tex]\(\frac{2}{1 - y^3}\)[/tex].
3. Conclusion:
None of the provided expressions [tex]\(A, B, C,\)[/tex] or [tex]\(D\)[/tex] are equivalent to [tex]\(\frac{2}{1 - y^3}\)[/tex]. Therefore, no expressions apply.
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.