At Westonci.ca, we connect you with the answers you need, thanks to our active and informed community. Discover comprehensive solutions to your questions from a wide network of experts on our user-friendly platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Certainly! Let's break down the problem step by step:
1. Define the Variables:
- Let [tex]\( M \)[/tex] represent the current age of the man.
- Let [tex]\( S \)[/tex] represent the sum of the current ages of his two sons.
2. Formulate the Equations:
- According to the problem, the man's age is three times the sum of the ages of his two sons. Therefore, we can write:
[tex]\[ M = 3S \][/tex]
- The problem also states that five years from now, the man's age will be double the sum of the ages of his two sons. In five years, the man's age will be [tex]\( M + 5 \)[/tex] and the sum of the sons' ages will be [tex]\( S + 10 \)[/tex] (since each son will be 5 years older, contributing a total of 10 years).
Therefore, we can write:
[tex]\[ M + 5 = 2(S + 10) \][/tex]
3. Solve the System of Equations:
- Starting with the first equation:
[tex]\[ M = 3S \][/tex]
- Substitute [tex]\( M \)[/tex] from the first equation into the second equation:
[tex]\[ 3S + 5 = 2(S + 10) \][/tex]
- Expand and simplify the second equation:
[tex]\[ 3S + 5 = 2S + 20 \][/tex]
[tex]\[ 3S - 2S = 20 - 5 \][/tex]
[tex]\[ S = 15 \][/tex]
- Now substitute [tex]\( S \)[/tex] back into the first equation to find [tex]\( M \)[/tex]:
[tex]\[ M = 3S \][/tex]
[tex]\[ M = 3 \times 15 \][/tex]
[tex]\[ M = 45 \][/tex]
4. Conclusion:
The present age of the man is [tex]\( 45 \)[/tex] years.
Therefore, the correct answer is:
(D) 45 years
1. Define the Variables:
- Let [tex]\( M \)[/tex] represent the current age of the man.
- Let [tex]\( S \)[/tex] represent the sum of the current ages of his two sons.
2. Formulate the Equations:
- According to the problem, the man's age is three times the sum of the ages of his two sons. Therefore, we can write:
[tex]\[ M = 3S \][/tex]
- The problem also states that five years from now, the man's age will be double the sum of the ages of his two sons. In five years, the man's age will be [tex]\( M + 5 \)[/tex] and the sum of the sons' ages will be [tex]\( S + 10 \)[/tex] (since each son will be 5 years older, contributing a total of 10 years).
Therefore, we can write:
[tex]\[ M + 5 = 2(S + 10) \][/tex]
3. Solve the System of Equations:
- Starting with the first equation:
[tex]\[ M = 3S \][/tex]
- Substitute [tex]\( M \)[/tex] from the first equation into the second equation:
[tex]\[ 3S + 5 = 2(S + 10) \][/tex]
- Expand and simplify the second equation:
[tex]\[ 3S + 5 = 2S + 20 \][/tex]
[tex]\[ 3S - 2S = 20 - 5 \][/tex]
[tex]\[ S = 15 \][/tex]
- Now substitute [tex]\( S \)[/tex] back into the first equation to find [tex]\( M \)[/tex]:
[tex]\[ M = 3S \][/tex]
[tex]\[ M = 3 \times 15 \][/tex]
[tex]\[ M = 45 \][/tex]
4. Conclusion:
The present age of the man is [tex]\( 45 \)[/tex] years.
Therefore, the correct answer is:
(D) 45 years
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. We hope this was helpful. Please come back whenever you need more information or answers to your queries. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.