Explore Westonci.ca, the premier Q&A site that helps you find precise answers to your questions, no matter the topic. Get immediate answers to your questions from a wide network of experienced professionals on our Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To solve this problem, we'll need to use the binomial probability formula. The binomial probability formula is used to find the probability of a specific number of successes in a certain number of trials and is given by:
[tex]\[ P(X = k) = \binom{n}{k} p^k (1-p)^{n-k} \][/tex]
Where:
- [tex]\( n \)[/tex] is the number of trials (in this case, 14 human resource managers).
- [tex]\( k \)[/tex] is the number of successes (in this case, fewer than 3 managers).
- [tex]\( p \)[/tex] is the probability of success on a single trial (in this case, 0.55).
- [tex]\(\binom{n}{k}\)[/tex] is the combination of [tex]\( n \)[/tex] items taken [tex]\( k \)[/tex] at a time, calculated as [tex]\(\frac{n!}{k!(n-k)!}\)[/tex].
To find the probability that fewer than 3 managers say job applicants should follow up within two weeks, we need to calculate the probability for each scenario where the number of managers is 0, 1, or 2 and then sum those probabilities.
1. Probability for exactly 0 managers ([tex]\( P(X = 0) \)[/tex]):
[tex]\[ P(X = 0) = \binom{14}{0} (0.55)^0 (0.45)^{14} = 1 \cdot 1 \cdot (0.45)^{14} \][/tex]
2. Probability for exactly 1 manager ([tex]\( P(X = 1) \)[/tex]):
[tex]\[ P(X = 1) = \binom{14}{1} (0.55)^1 (0.45)^{13} = 14 \cdot (0.55) \cdot (0.45)^{13} \][/tex]
3. Probability for exactly 2 managers ([tex]\( P(X = 2) \)[/tex]):
[tex]\[ P(X = 2) = \binom{14}{2} (0.55)^2 (0.45)^{12} = 91 \cdot (0.55)^2 \cdot (0.45)^{12} \][/tex]
Next, add up these probabilities:
[tex]\[ P(X < 3) = P(X = 0) + P(X = 1) + P(X = 2) \][/tex]
According to the numerical calculations, the sum of these probabilities is given as approximately 0.0022.
Therefore, the probability that fewer than 3 of the 14 human resource managers say job applicants should follow up within two weeks is approximately:
[tex]\[ \boxed{0.0022} \][/tex]
Rounded to four decimal places as required, the probability is:
[tex]\[ 0.0022 \][/tex]
[tex]\[ P(X = k) = \binom{n}{k} p^k (1-p)^{n-k} \][/tex]
Where:
- [tex]\( n \)[/tex] is the number of trials (in this case, 14 human resource managers).
- [tex]\( k \)[/tex] is the number of successes (in this case, fewer than 3 managers).
- [tex]\( p \)[/tex] is the probability of success on a single trial (in this case, 0.55).
- [tex]\(\binom{n}{k}\)[/tex] is the combination of [tex]\( n \)[/tex] items taken [tex]\( k \)[/tex] at a time, calculated as [tex]\(\frac{n!}{k!(n-k)!}\)[/tex].
To find the probability that fewer than 3 managers say job applicants should follow up within two weeks, we need to calculate the probability for each scenario where the number of managers is 0, 1, or 2 and then sum those probabilities.
1. Probability for exactly 0 managers ([tex]\( P(X = 0) \)[/tex]):
[tex]\[ P(X = 0) = \binom{14}{0} (0.55)^0 (0.45)^{14} = 1 \cdot 1 \cdot (0.45)^{14} \][/tex]
2. Probability for exactly 1 manager ([tex]\( P(X = 1) \)[/tex]):
[tex]\[ P(X = 1) = \binom{14}{1} (0.55)^1 (0.45)^{13} = 14 \cdot (0.55) \cdot (0.45)^{13} \][/tex]
3. Probability for exactly 2 managers ([tex]\( P(X = 2) \)[/tex]):
[tex]\[ P(X = 2) = \binom{14}{2} (0.55)^2 (0.45)^{12} = 91 \cdot (0.55)^2 \cdot (0.45)^{12} \][/tex]
Next, add up these probabilities:
[tex]\[ P(X < 3) = P(X = 0) + P(X = 1) + P(X = 2) \][/tex]
According to the numerical calculations, the sum of these probabilities is given as approximately 0.0022.
Therefore, the probability that fewer than 3 of the 14 human resource managers say job applicants should follow up within two weeks is approximately:
[tex]\[ \boxed{0.0022} \][/tex]
Rounded to four decimal places as required, the probability is:
[tex]\[ 0.0022 \][/tex]
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. We appreciate your time. Please come back anytime for the latest information and answers to your questions. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.