Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Our platform provides a seamless experience for finding precise answers from a network of experienced professionals. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To solve this problem, we'll need to use the binomial probability formula. The binomial probability formula is used to find the probability of a specific number of successes in a certain number of trials and is given by:
[tex]\[ P(X = k) = \binom{n}{k} p^k (1-p)^{n-k} \][/tex]
Where:
- [tex]\( n \)[/tex] is the number of trials (in this case, 14 human resource managers).
- [tex]\( k \)[/tex] is the number of successes (in this case, fewer than 3 managers).
- [tex]\( p \)[/tex] is the probability of success on a single trial (in this case, 0.55).
- [tex]\(\binom{n}{k}\)[/tex] is the combination of [tex]\( n \)[/tex] items taken [tex]\( k \)[/tex] at a time, calculated as [tex]\(\frac{n!}{k!(n-k)!}\)[/tex].
To find the probability that fewer than 3 managers say job applicants should follow up within two weeks, we need to calculate the probability for each scenario where the number of managers is 0, 1, or 2 and then sum those probabilities.
1. Probability for exactly 0 managers ([tex]\( P(X = 0) \)[/tex]):
[tex]\[ P(X = 0) = \binom{14}{0} (0.55)^0 (0.45)^{14} = 1 \cdot 1 \cdot (0.45)^{14} \][/tex]
2. Probability for exactly 1 manager ([tex]\( P(X = 1) \)[/tex]):
[tex]\[ P(X = 1) = \binom{14}{1} (0.55)^1 (0.45)^{13} = 14 \cdot (0.55) \cdot (0.45)^{13} \][/tex]
3. Probability for exactly 2 managers ([tex]\( P(X = 2) \)[/tex]):
[tex]\[ P(X = 2) = \binom{14}{2} (0.55)^2 (0.45)^{12} = 91 \cdot (0.55)^2 \cdot (0.45)^{12} \][/tex]
Next, add up these probabilities:
[tex]\[ P(X < 3) = P(X = 0) + P(X = 1) + P(X = 2) \][/tex]
According to the numerical calculations, the sum of these probabilities is given as approximately 0.0022.
Therefore, the probability that fewer than 3 of the 14 human resource managers say job applicants should follow up within two weeks is approximately:
[tex]\[ \boxed{0.0022} \][/tex]
Rounded to four decimal places as required, the probability is:
[tex]\[ 0.0022 \][/tex]
[tex]\[ P(X = k) = \binom{n}{k} p^k (1-p)^{n-k} \][/tex]
Where:
- [tex]\( n \)[/tex] is the number of trials (in this case, 14 human resource managers).
- [tex]\( k \)[/tex] is the number of successes (in this case, fewer than 3 managers).
- [tex]\( p \)[/tex] is the probability of success on a single trial (in this case, 0.55).
- [tex]\(\binom{n}{k}\)[/tex] is the combination of [tex]\( n \)[/tex] items taken [tex]\( k \)[/tex] at a time, calculated as [tex]\(\frac{n!}{k!(n-k)!}\)[/tex].
To find the probability that fewer than 3 managers say job applicants should follow up within two weeks, we need to calculate the probability for each scenario where the number of managers is 0, 1, or 2 and then sum those probabilities.
1. Probability for exactly 0 managers ([tex]\( P(X = 0) \)[/tex]):
[tex]\[ P(X = 0) = \binom{14}{0} (0.55)^0 (0.45)^{14} = 1 \cdot 1 \cdot (0.45)^{14} \][/tex]
2. Probability for exactly 1 manager ([tex]\( P(X = 1) \)[/tex]):
[tex]\[ P(X = 1) = \binom{14}{1} (0.55)^1 (0.45)^{13} = 14 \cdot (0.55) \cdot (0.45)^{13} \][/tex]
3. Probability for exactly 2 managers ([tex]\( P(X = 2) \)[/tex]):
[tex]\[ P(X = 2) = \binom{14}{2} (0.55)^2 (0.45)^{12} = 91 \cdot (0.55)^2 \cdot (0.45)^{12} \][/tex]
Next, add up these probabilities:
[tex]\[ P(X < 3) = P(X = 0) + P(X = 1) + P(X = 2) \][/tex]
According to the numerical calculations, the sum of these probabilities is given as approximately 0.0022.
Therefore, the probability that fewer than 3 of the 14 human resource managers say job applicants should follow up within two weeks is approximately:
[tex]\[ \boxed{0.0022} \][/tex]
Rounded to four decimal places as required, the probability is:
[tex]\[ 0.0022 \][/tex]
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.